Does \( x+y \) show direct vareation \( \frac{x}{y}=2 \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Bonus Knowledge
When we say \( \frac{x}{y} = 2 \), it implies that \( x \) is directly proportional to \( y \). This means that for every unit increase in \( y \), \( x \) increases by twice that amount. Thus, we can rearrange the equation to \( x = 2y \), showing a clear relationship where knowing one variable allows us to calculate the other easily. However, \( x+y \) does not exhibit direct variation in the classical sense. Direct variation typically refers to a relationship where one variable is an exact multiple of the other. In this case, \( x + y \) would actually represent a more complex relationship, since it combines both variables together instead of showcasing a single direct ratio.
