Pregunta
upstudy study bank question image url

A quadratic function has \( x \)-intercepts at \( \left(-\frac{1}{2}, 0\right) \) and \( (-1,0) \). The point, \( (4,90) \), lies on the parabola. Complete the statements. The value of \( a \) is 14 The equation of the quadratic function is \( f(x)= \) \( \begin{array}{cll}2 & (2 x+1)(x+2) & \times \\ \text { in factored form. }\end{array} \)

Ask by Guerrero Gibbs. in the United States
Feb 21,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The value of \( a \) is 4, and the equation of the quadratic function is \( f(x) = 4\left(x + \frac{1}{2}\right)(x + 1) \) in factored form.

Solución

To find the equation of the quadratic function given the \( x \)-intercepts and a point on the parabola, we can follow these steps: 1. **Identify the roots**: The \( x \)-intercepts are given as \( -\frac{1}{2} \) and \( -1 \). This means the quadratic can be expressed in factored form as: \[ f(x) = a(x + \frac{1}{2})(x + 1) \] where \( a \) is a constant that will be determined later. 2. **Expand the factored form**: We can expand the expression: \[ f(x) = a\left(x + \frac{1}{2}\right)(x + 1) = a\left(x^2 + x + \frac{1}{2}x + \frac{1}{2}\right) = a\left(x^2 + \frac{3}{2}x + \frac{1}{2}\right) \] 3. **Use the point (4, 90)**: We know that the point \( (4, 90) \) lies on the parabola, which means: \[ f(4) = 90 \] Substituting \( x = 4 \) into the equation gives: \[ f(4) = a\left(4^2 + \frac{3}{2}(4) + \frac{1}{2}\right) = 90 \] Simplifying this: \[ f(4) = a\left(16 + 6 + \frac{1}{2}\right) = a\left(22.5\right) = 90 \] Now, we can solve for \( a \): \[ a \cdot 22.5 = 90 \implies a = \frac{90}{22.5} = 4 \] 4. **Write the final equation**: Now that we have \( a = 4 \), we can write the equation of the quadratic function: \[ f(x) = 4\left(x + \frac{1}{2}\right)(x + 1) \] 5. **Convert to standard form**: To express it in standard form, we can expand it: \[ f(x) = 4\left(x^2 + \frac{3}{2}x + \frac{1}{2}\right) = 4x^2 + 6x + 2 \] Thus, the completed statements are: - The value of \( a \) is \( 4 \). - The equation of the quadratic function is \( f(x) = 4\left(x + \frac{1}{2}\right)(x + 1) \) in factored form.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To begin with, the general form of a quadratic function given the \( x \)-intercepts can be expressed as \( f(x) = a(x - r_1)(x - r_2) \), where \( r_1 \) and \( r_2 \) are the roots of the equation. Thus, for the roots \(-\frac{1}{2}\) and \(-1\), the function can be expressed as: \[ f(x) = a\left(x + \frac{1}{2}\right)(x + 1) \] Now, substituting the point \( (4, 90) \) into the equation allows for the calculation of \( a \). Plugging in these values, we solve for \( a \) and find it to be 14. The complete equation in factored form is: \[ f(x) = 14\left(x + \frac{1}{2}\right)(x + 1) \] Did you know that quadratic functions are not just confined to mathematical theory? They can describe real-world phenomena like projectile motion, where objects follow a parabolic trajectory due to gravity! Whether it's a basketball arc or a rollercoaster ride, quadratics help model the height against time effectively. Also, when graphing quadratics, a common pitfall is neglecting to check the vertex or the axis of symmetry. Always remember that the vertex provides maximum or minimum values, essential for visualizing the function correctly. Getting caught up in just finding intercepts can lead to a skewed understanding of the graph's overall behavior!

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad