Pregunta
upstudy study bank question image url

What is the time period of a loan for \( \$ 3,000 \), at \( 10 \% \) ordinary interest, if the amount of interest is \( \$ 145.00 \) ? (Round any fraction to the next higher day.) Select one: a. 174 ob. 176 o c. 177 o d. 178

Ask by Sullivan Dunn. in the United States
Feb 21,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The time period of the loan is 177 days.

Solución

To find the time period of a loan, we can use the formula for simple interest: \[ \text{Interest} = \text{Principal} \times \text{Rate} \times \text{Time} \] Given: - Principal (\( P \)) = $3,000 - Rate (\( R \)) = 10% = 0.10 - Interest (\( I \)) = $145.00 We need to find the time period (\( T \)). Rearranging the formula to solve for time: \[ T = \frac{I}{P \times R} \] Substitute the given values: \[ T = \frac{145}{3000 \times 0.10} \] \[ T = \frac{145}{300} \] \[ T = 0.4833 \] Since the time period is in years, we need to convert it to days. There are 365 days in a year. \[ T \text{ in days} = 0.4833 \times 365 \] \[ T \text{ in days} = 176.5 \] Rounding to the next higher day, the time period of the loan is 177 days. Therefore, the correct answer is: c. 177

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the time period of the loan, you can use the formula for ordinary interest, which is: \[ I = P \times r \times t \] where: - \(I\) is the interest (\$145.00), - \(P\) is the principal (\$3,000), - \(r\) is the interest rate (10% or 0.10), - \(t\) is the time in years. Rearranging the formula to solve for \(t\): \[ t = \frac{I}{P \times r} = \frac{145}{3000 \times 0.10} = \frac{145}{300} = 0.48333 \text{ years} \] Converting years to days: \[ 0.48333 \text{ years} \times 360 \text{ days/year} \approx 174.00 \text{ days} \] Therefore, rounding up gives you 174 days. **Answer: a. 174** Now let's dive into some fun additional facts related to this type of loan! Ordinary interest calculations typically use a 360-day year for simpler math, but this method can lead to slightly more interest accrued over time compared to using a 365-day year! So sometimes in finance, the "shortcuts" can have unexpected twists! And if you're curious about real-world applications, understanding ordinary interest is crucial for businesses when managing loans and cash flow. Businesses often rely on these calculations to ensure they're staying profitable while making timely repayments—because every dollar counts!

preguntas relacionadas

Latest Arithmetic Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad