1.7 Given \( : S=\frac{2 a b}{c+2} \) 1.7.1 Make \( b \) the subject of the formula. 1.7.2 Solve for \( b \) if \( S=20, a=10 \) and \( c=4 \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
The Deep Dive
To make \( b \) the subject of the formula, we start with the equation \( S = \frac{2ab}{c + 2} \). First, multiply both sides by \( (c + 2) \) to eliminate the denominator: \( S(c + 2) = 2ab \). Next, we can isolate \( b \) by dividing both sides by \( 2a \): \( b = \frac{S(c + 2)}{2a} \). Now, to solve for \( b \) given \( S = 20 \), \( a = 10 \), and \( c = 4 \): Substituting the values into the equation, we have: \[ b = \frac{20(4 + 2)}{2 \cdot 10} = \frac{20 \cdot 6}{20} = 6 \]. Thus, the value of \( b \) is 6.
