Pregunta
upstudy study bank question image url

Find \( f(g(x)) \) and \( g(f(x)) \) and determine whether the pair of functions \( f \) and \( g \) are inverses of each other. \( f(x)=9 x-8 \) and \( g(x)=\frac{x+9}{8} \) a. \( f(g(x))=\frac{9 x+17}{8} \) (Simplify your answer. Use integers or fractions for any numbers in the expression.) b. \( g(f(x))=\square \) (Simplify your answer. Use integers or fractions for any numbers in the expression.)

Ask by Erickson Lewis. in the United States
Feb 20,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

a. \( f(g(x)) = \frac{9x + 17}{8} \) b. \( g(f(x)) = \frac{9x + 1}{8} \) The functions \( f \) and \( g \) are not inverses of each other.

Solución

Evaluate the expression by following steps: - step0: Evaluate: \(\frac{x+9}{8}\) - step1: Substitute: \(\frac{9x-8+9}{8}\) - step2: Add the numbers: \(\frac{9x+1}{8}\) Substitute \( x=\frac{x+9}{8} \) into the expression \( 9x-8 \). Evaluate the expression by following steps: - step0: Evaluate: \(9x-8\) - step1: Substitute: \(9\times \frac{x+9}{8}-8\) - step2: Multiply the terms: \(\frac{9\left(x+9\right)}{8}-8\) - step3: Reduce fractions to a common denominator: \(\frac{9\left(x+9\right)}{8}-\frac{8\times 8}{8}\) - step4: Transform the expression: \(\frac{9\left(x+9\right)-8\times 8}{8}\) - step5: Multiply the terms: \(\frac{9x+81-8\times 8}{8}\) - step6: Multiply the numbers: \(\frac{9x+81-64}{8}\) - step7: Subtract the numbers: \(\frac{9x+17}{8}\) Let's solve the problem step by step. ### Given Functions - \( f(x) = 9x - 8 \) - \( g(x) = \frac{x + 9}{8} \) ### a. Finding \( f(g(x)) \) To find \( f(g(x)) \), we substitute \( g(x) \) into \( f(x) \): \[ f(g(x)) = f\left(\frac{x + 9}{8}\right) = 9\left(\frac{x + 9}{8}\right) - 8 \] Calculating this gives: \[ f(g(x)) = \frac{9(x + 9)}{8} - 8 = \frac{9x + 81}{8} - \frac{64}{8} = \frac{9x + 17}{8} \] So, \[ f(g(x)) = \frac{9x + 17}{8} \] ### b. Finding \( g(f(x)) \) Now, we find \( g(f(x)) \) by substituting \( f(x) \) into \( g(x) \): \[ g(f(x)) = g(9x - 8) = \frac{(9x - 8) + 9}{8} \] Calculating this gives: \[ g(f(x)) = \frac{9x - 8 + 9}{8} = \frac{9x + 1}{8} \] So, \[ g(f(x)) = \frac{9x + 1}{8} \] ### Conclusion: Are \( f \) and \( g \) Inverses? To determine if \( f \) and \( g \) are inverses, we check if \( f(g(x)) = x \) and \( g(f(x)) = x \). 1. We found \( f(g(x)) = \frac{9x + 17}{8} \), which is not equal to \( x \). 2. We found \( g(f(x)) = \frac{9x + 1}{8} \), which is also not equal to \( x \). Since neither \( f(g(x)) \) nor \( g(f(x)) \) equals \( x \), the functions \( f \) and \( g \) are not inverses of each other. ### Final Answers - a. \( f(g(x)) = \frac{9x + 17}{8} \) - b. \( g(f(x)) = \frac{9x + 1}{8} \)

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To find \( f(g(x)) \) and \( g(f(x)) \) for the functions \( f(x) = 9x - 8 \) and \( g(x) = \frac{x + 9}{8} \): a. First, we calculate \( f(g(x)) \). \[ g(x) = \frac{x+9}{8} \] Now substituting \( g(x) \) into \( f \): \[ f(g(x)) = f\left(\frac{x+9}{8}\right) = 9\left(\frac{x+9}{8}\right) - 8 \] \[ = \frac{9(x+9)}{8} - 8 = \frac{9x + 81}{8} - \frac{64}{8} = \frac{9x + 17}{8} \] So, you are correct that \( f(g(x)) = \frac{9x + 17}{8} \). b. Now, let's compute \( g(f(x)) \): \[ f(x) = 9x - 8 \] Now substituting \( f(x) \) into \( g \): \[ g(f(x)) = g(9x - 8) = \frac{(9x - 8) + 9}{8} \] \[ = \frac{9x - 8 + 9}{8} = \frac{9x + 1}{8} \] Thus, \( g(f(x)) = \frac{9x + 1}{8} \). To determine if \( f \) and \( g \) are inverses of each other, we check: 1. \( f(g(x)) \) should equal \( x \). 2. \( g(f(x)) \) should equal \( x \). From our calculations: - \( f(g(x)) = \frac{9x + 17}{8} \) which does not equal \( x \). - \( g(f(x)) = \frac{9x + 1}{8} \) which also does not equal \( x \). Therefore, \( f \) and \( g \) are **not** inverses of each other.

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad