Pregunta

The population of a certain species in a protected area can be modeled by the function \( P(t) = 200 + 50 \sin(t) \), where \( t \) is measured in years. Determine the total population increase over one complete cycle (from \( t=0 \) to \( t=2\pi \)).

Ask by Elliott Hilton. in Nigeria
Jan 09,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The total population increase over one complete cycle is 100 individuals.

Solución

To determine the **total population increase** of the species over one complete cycle (from \( t = 0 \) to \( t = 2\pi \)), we'll analyze the given population function: \[ P(t) = 200 + 50 \sin(t) \] ### Understanding the Function - **Baseline Population:** The constant term \( 200 \) represents the baseline population. - **Oscillation:** The term \( 50 \sin(t) \) models the fluctuation in population over time due to factors like birth rates, death rates, etc. ### Calculating Population Increases 1. **Identify When Population Increases:** - The population increases when the derivative \( P'(t) \) is positive. - Compute the derivative: \[ P'(t) = 50 \cos(t) \] - \( P'(t) > 0 \) when \( \cos(t) > 0 \), which occurs in the intervals: \[ 0 < t < \frac{\pi}{2} \quad \text{and} \quad \frac{3\pi}{2} < t < 2\pi \] 2. **Calculate the Increase Over Each Interval:** - **First Interval \([0, \frac{\pi}{2}]\):** \[ \int_{0}^{\frac{\pi}{2}} 50 \cos(t) \, dt = 50 \sin(t) \Big|_{0}^{\frac{\pi}{2}} = 50 (1 - 0) = 50 \] - **Second Interval \([\frac{3\pi}{2}, 2\pi]\):** \[ \int_{\frac{3\pi}{2}}^{2\pi} 50 \cos(t) \, dt = 50 \sin(t) \Big|_{\frac{3\pi}{2}}^{2\pi} = 50 (0 - (-1)) = 50 \] 3. **Total Population Increase:** \[ 50 + 50 = 100 \] ### Conclusion The **total population increase** over one complete cycle from \( t = 0 \) to \( t = 2\pi \) is **100** individuals. **Answer:** The total population increase over one complete cycle is 100 individuals.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the total population increase over one complete cycle from \( t=0 \) to \( t=2\pi \), we need to analyze the given population function \( P(t) = 200 + 50 \sin(t) \). 1. At \( t=0 \): \[ P(0) = 200 + 50 \sin(0) = 200 + 0 = 200 \] 2. At \( t=2\pi \): \[ P(2\pi) = 200 + 50 \sin(2\pi) = 200 + 0 = 200 \] Since the population returns to the same value at the start and end of the cycle, we examine the maximum and minimum population within this period: 3. Maximum population occurs when \( \sin(t) = 1 \): \[ P_{\text{max}} = 200 + 50 \cdot 1 = 250 \] 4. Minimum population occurs when \( \sin(t) = -1 \): \[ P_{\text{min}} = 200 + 50 \cdot (-1) = 150 \] 5. Therefore, the total population increase during one complete cycle (from minimum to maximum) is: \[ \text{Population increase} = P_{\text{max}} - P_{\text{min}} = 250 - 150 = 100 \] Thus, the total population increase over one complete cycle is \( \boxed{100} \).

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad