The population of a certain species in a protected area can be modeled by the function \( P(t) = 200 + 50 \sin(t) \), where \( t \) is measured in years. Determine the total population increase over one complete cycle (from \( t=0 \) to \( t=2\pi \)).
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Mind Expander
To find the total population increase over one complete cycle from \( t=0 \) to \( t=2\pi \), we need to analyze the given population function \( P(t) = 200 + 50 \sin(t) \). 1. At \( t=0 \): \[ P(0) = 200 + 50 \sin(0) = 200 + 0 = 200 \] 2. At \( t=2\pi \): \[ P(2\pi) = 200 + 50 \sin(2\pi) = 200 + 0 = 200 \] Since the population returns to the same value at the start and end of the cycle, we examine the maximum and minimum population within this period: 3. Maximum population occurs when \( \sin(t) = 1 \): \[ P_{\text{max}} = 200 + 50 \cdot 1 = 250 \] 4. Minimum population occurs when \( \sin(t) = -1 \): \[ P_{\text{min}} = 200 + 50 \cdot (-1) = 150 \] 5. Therefore, the total population increase during one complete cycle (from minimum to maximum) is: \[ \text{Population increase} = P_{\text{max}} - P_{\text{min}} = 250 - 150 = 100 \] Thus, the total population increase over one complete cycle is \( \boxed{100} \).
