Pregunta
upstudy study bank question image url

Show that the equation \( x^{2}+k x=5-2 k \) has two real and distinct roots for all real values of \( k \).

Ask by Conner Pritchard. in Singapore
Feb 14,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

For all real values of \( k \), the equation \( x^{2} + kx = 5 - 2k \) has two real and distinct roots because the discriminant \( \Delta = (k - 4)^2 + 4 \) is always positive.

Solución

We start with the equation   x² + k x = 5 − 2k. First, we rewrite the equation in the standard quadratic form:   x² + k x − (5 − 2k) = 0. For a quadratic equation ax² + bx + c = 0 to have two real and distinct roots, its discriminant (∆), given by ∆ = b² − 4ac, must be strictly positive. In our equation, a = 1, b = k, and c = −(5 − 2k). Thus, the discriminant is   ∆ = k² − 4(1)(−(5 − 2k))     = k² + 4(5 − 2k)     = k² + 20 − 8k. It is often helpful to complete the square for such expressions. Notice that   k² − 8k + 20 = (k² − 8k + 16) + 4            = (k − 4)² + 4. Since (k − 4)² is always non-negative for all real k (as squares are always ≥ 0), it follows that   (k − 4)² + 4 ≥ 0 + 4 = 4. In fact, more precisely, (k − 4)² + 4 > 0 for all real k because the minimum value occurs when (k − 4)² = 0, giving ∆ = 4. Since ∆ = (k − 4)² + 4 is always greater than zero irrespective of the value of k, the quadratic equation has two real and distinct roots for all real values of k.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To show that the equation \( x^{2}+k x=5-2 k \) has two real and distinct roots for all real values of \( k \), we first rearrange the equation into standard quadratic form: \[ x^2 + kx + (2k - 5) = 0 \] In a quadratic equation of the form \( ax^2 + bx + c = 0 \), the condition for having two real and distinct roots is that the discriminant must be positive. The discriminant \( D \) is given by: \[ D = b^2 - 4ac \] Here, \( a = 1 \), \( b = k \), and \( c = 2k - 5 \). So we calculate the discriminant: \[ D = k^2 - 4(1)(2k - 5) \] \[ D = k^2 - 8k + 20 \] Next, we will determine if this discriminant is positive for all real values of \( k \). We can analyze the quadratic expression: \[ D = k^2 - 8k + 20 \] To find the minimum value of this quadratic, we can complete the square or use the vertex formula \( k = -\frac{b}{2a} \): \[ k = -\frac{-8}{2 \cdot 1} = 4 \] Substituting \( k = 4 \) back into the expression for the discriminant: \[ D = 4^2 - 8 \cdot 4 + 20 = 16 - 32 + 20 = 4 \] Since the minimum value of the discriminant \( D \) is \( 4 > 0 \), the discriminant is always positive for all real values of \( k \). Therefore, the equation \( x^2 + kx + (2k - 5) = 0 \) has two real and distinct roots for every real number \( k \).

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad