Pregunta
upstudy study bank question image url

A sequence is defined by \( U_{n+1}=3 U_{n}+1 \) (i) Write down the first four terms of the sequence, given that \( U_{1}=0 \). (ii) Hence describe the behaviour of the sequence. (iii) Express \( U_{3} \) in terms of \( U_{1} \).

Ask by Bowen Spencer. in South Africa
Nov 28,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The first four terms are 0, 1, 4, 13. The sequence grows exponentially. \( U_3 = 9U_1 + 4 \).

Solución

To solve the problem, we will follow the steps outlined in the question. ### (i) Write down the first four terms of the sequence, given that \( U_{1}=0 \). We start with the initial term \( U_1 = 0 \) and use the recurrence relation \( U_{n+1} = 3U_n + 1 \) to find the subsequent terms. 1. **Calculate \( U_2 \)**: \[ U_2 = 3U_1 + 1 = 3 \cdot 0 + 1 = 1 \] 2. **Calculate \( U_3 \)**: \[ U_3 = 3U_2 + 1 = 3 \cdot 1 + 1 = 3 + 1 = 4 \] 3. **Calculate \( U_4 \)**: \[ U_4 = 3U_3 + 1 = 3 \cdot 4 + 1 = 12 + 1 = 13 \] Thus, the first four terms of the sequence are: \[ U_1 = 0, \quad U_2 = 1, \quad U_3 = 4, \quad U_4 = 13 \] ### (ii) Hence describe the behaviour of the sequence. To analyze the behavior of the sequence, we can observe the terms we calculated: - \( U_1 = 0 \) - \( U_2 = 1 \) - \( U_3 = 4 \) - \( U_4 = 13 \) We can see that the sequence is increasing. To understand the growth rate, we can look at the recurrence relation: \[ U_{n+1} = 3U_n + 1 \] This indicates that each term is approximately three times the previous term, plus one. As \( n \) increases, the "+1" becomes less significant compared to the multiplication by 3. Therefore, we can conclude that the sequence grows exponentially. ### (iii) Express \( U_3 \) in terms of \( U_1 \). From our earlier calculations, we found: \[ U_3 = 4 \] Now, we can express \( U_3 \) in terms of \( U_1 \) using the recurrence relation. We know: \[ U_2 = 3U_1 + 1 \] Substituting \( U_1 = 0 \): \[ U_2 = 3 \cdot 0 + 1 = 1 \] Now, substituting \( U_2 \) into the equation for \( U_3 \): \[ U_3 = 3U_2 + 1 = 3(3U_1 + 1) + 1 = 9U_1 + 3 + 1 = 9U_1 + 4 \] Thus, we can express \( U_3 \) in terms of \( U_1 \) as: \[ U_3 = 9U_1 + 4 \] In summary: - The first four terms are \( 0, 1, 4, 13 \). - The sequence grows exponentially. - \( U_3 = 9U_1 + 4 \).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the first four terms of the sequence defined by \( U_{n+1} = 3U_n + 1 \) and given \( U_1 = 0 \): 1. Calculate \( U_2 \): \[ U_2 = 3U_1 + 1 = 3 \cdot 0 + 1 = 1. \] 2. Calculate \( U_3 \): \[ U_3 = 3U_2 + 1 = 3 \cdot 1 + 1 = 4. \] 3. Calculate \( U_4 \): \[ U_4 = 3U_3 + 1 = 3 \cdot 4 + 1 = 13. \] So, the first four terms of the sequence are: \( U_1 = 0, U_2 = 1, U_3 = 4, U_4 = 13. \) Describing the behavior of the sequence: The sequence is increasing rapidly due to the multiplicative factor of 3. Each term becomes significantly larger than the last, demonstrating a potential exponential growth pattern. As \( n \) increases, \( U_n \) diverges towards infinity, suggesting that it doesn't level off or stabilize. Expressing \( U_3 \) in terms of \( U_1 \): Since \( U_3 = 3U_2 + 1 \) and \( U_2 = 3U_1 + 1 \), we can substitute: \[ U_3 = 3(3U_1 + 1) + 1 = 9U_1 + 3 + 1 = 9U_1 + 4. \] Hence, \( U_3 = 9U_1 + 4 \).

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad