Find the general solution to the system corresponding to the following matrix. \[ A=\left[\begin{array}{llll|l}1 & 7 & 0 & 0 & 2 \\ 0 & 0 & 1 & 3 & 4 \\ 0 & 0 & 0 & 0 & 0\end{array}\right] \] \( \left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]=\left[\begin{array}{ll}\text { Ex: 1-2x_3 } \\ \square & \\ \square\end{array}\right] \) Enter \( 1-2 x_{3} \) as: \( 1-2 \times 3 \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Bonus Knowledge
To extract the general solution from the provided augmented matrix, we rewrite the system of equations represented by the matrix. The first equation gives us \( x_1 + 7x_2 = 2 \), and the second equation reveals \( x_3 + 3x_4 = 4 \). The third row, being all zeros, indicates that we have a free variable situation. Let's express \( x_2 \) and \( x_4 \) in terms of the free variable \( x_3 \). From the first equation, we isolate \( x_1 \): \[ x_1 = 2 - 7x_2 \] Then, from the second equation, solving for \( x_4 \): \[ x_4 = \frac{4 - x_3}{3} \] The complete representation of the solution is incorporated with arbitrary parameters. We can express the general solution in terms of \( x_3 \) and a free variable indicating \( x_2 \): \[ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 2 - 7x_2 \\ x_2 \\ x_3 \\ \frac{4 - x_3}{3} \end{pmatrix} \] Thus, the full solution involving substitutions can be packaged neatly. To finalize: 1. \( x_1 = 2 - 7 \times x_2 \) 2. \( x_2 = x_2 \) (free variable) 3. \( x_3 = x_3 \) (free variable) 4. \( x_4 = \frac{4 - x_3}{3} \) Expressing \( x_1 \): \[ \left[ \begin{array}{c} x_1 \\ x_2 \\ x_3 \\ x_4 \end{array} \right] = \left[ \begin{array}{c} 2 - 7x_{2} \\ x_{2} \\ x_{3} \\ \frac{4 - x_{3}}{3} \end{array} \right] \] This gives you the framework to define \( x_2 \) and \( x_3 \) freely!
