Pregunta
upstudy study bank question image url

A quadrilateral has two angles that measure \( 317.6^{\circ} \) and \( 31.6^{\circ} \). The other two angles are in a ratio of \( 4: 5 \). What are the measures of those two angles?

Ask by Medina Johnston. in the United States
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The other two angles are 4.8° and 6.0°.

Solución

The sum of the interior angles of any quadrilateral is 360°. Two angles are given: 317.6° and 31.6°. Let the other two angles be 4x and 5x (since their ratio is 4:5). Set up the equation: 317.6° + 31.6° + 4x + 5x = 360° Combine like terms: 349.2° + 9x = 360° Subtract 349.2° from both sides: 9x = 10.8° Divide by 9: x = 1.2° Now compute the angles: 4x = 4 × 1.2° = 4.8° 5x = 5 × 1.2° = 6.0° Thus, the measures of the other two angles are 4.8° and 6.0°.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the measures of the two unknown angles in the quadrilateral, we first need to determine the sum of the angles in a quadrilateral, which is \( 360^{\circ} \). Given angles: 1. \( 317.6^{\circ} \) 2. \( 31.6^{\circ} \) Now, we can find the total of the known angles: \[ 317.6 + 31.6 = 349.2^{\circ} \] Now, we subtract this sum from \( 360^{\circ} \) to find the total measure of the remaining two angles: \[ 360 - 349.2 = 10.8^{\circ} \] Let the measures of the two unknown angles be \( 4x \) and \( 5x \) since they are in the ratio \( 4:5 \). Therefore: \[ 4x + 5x = 10.8 \] This simplifies to: \[ 9x = 10.8 \] Now, we solve for \( x \): \[ x = \frac{10.8}{9} = 1.2 \] Now, we can find the measures of the two angles: 1. \( 4x = 4(1.2) = 4.8^{\circ} \) 2. \( 5x = 5(1.2) = 6.0^{\circ} \) Thus, the measures of the two angles are \( 4.8^{\circ} \) and \( 6.0^{\circ} \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad