Pregunta
upstudy study bank question image url

1.3.2 Make a conjecture with regard to \( r^{n} \) and \( S_{n} \) as \( n \rightarrow \infty \) (2) 1.4 CASE 3: \( r=1 \) 1.4.1 What is the sum of the geometric series \[ S_{n}=a+a r+a r^{2}+\ldots a r^{n-1} \text { if } r=1 ? \] 1.4.2 Make a conjecture with regard to \( r^{n} \) and \( S_{n} \) as \( n \rightarrow \infty \) 1.5 CASE 4: \( r=-1 \) 1.5.1 What is the sum of the geometric series \[ S_{n}=a+a r+a r^{2}+\ldots a r^{n-1} \text { if } r=-1 ? \] 1.5.2 Do the sums above approach some finite particular number as \( n \rightarrow \infty \) i.e. is the sequence divergent or convergent? 1.6 CASE 5: \( -1
Ask by Gough Carroll. in South Africa
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

**1.3.2 Conjecture:** As \( n \) becomes very large, \( r^{n} \) approaches 0 if \( |r| < 1 \), and the sum \( S_{n} \) approaches \( \frac{a}{1 - r} \). If \( |r| \geq 1 \), \( S_{n} \) does not approach a finite number. **1.4 CASE 3: \( r=1 \)** - **Sum:** \( S_{n} = na \) - **Conclusion:** As \( n \) increases, \( S_{n} \) grows without bound. **1.5 CASE 4: \( r=-1 \)** - **Sum:** Alternates between \( a \) and 0. - **Conclusion:** The series does not converge as \( n \) increases. **1.6 CASE 5: \( -1 < r < 1 \)** - **Possible Values of \( r \):** 0.5, -0.5, 0.9 - **Paper Cutting Steps:** 1. Cut A4 into two \( 8 \, \text{unit}^2 \) rectangles. 2. Cut one into two \( 4 \, \text{unit}^2 \) rectangles. 3. Cut one into two \( 2 \, \text{unit}^2 \) rectangles. 4. Cut one into two \( 1 \, \text{unit}^2 \) rectangles. 5. Next three areas: \( 1 \, \text{unit}^2 \), \( 0.5 \, \text{unit}^2 \), \( 0.25 \, \text{unit}^2 \) - **Geometric Sequence Explanation:** Each area is half of the previous, forming a geometric sequence with a common ratio of \( \frac{1}{2} \).

Solución

Let's break down the problem step by step, addressing each part systematically. ### 1.3.2 Conjecture Regarding \( r^{n} \) and \( S_{n} \) as \( n \rightarrow \infty \) For a geometric series defined as: \[ S_{n} = a + ar + ar^{2} + \ldots + ar^{n-1} \] where \( a \) is the first term and \( r \) is the common ratio, we can analyze the behavior of \( r^{n} \) and \( S_{n} \) as \( n \) approaches infinity. - If \( |r| < 1 \): As \( n \rightarrow \infty \), \( r^{n} \rightarrow 0 \). Thus, \( S_{n} \) converges to \( \frac{a}{1 - r} \). - If \( |r| > 1 \): As \( n \rightarrow \infty \), \( r^{n} \rightarrow \infty \). Thus, \( S_{n} \) diverges. - If \( r = 1 \): \( S_{n} = na \) which diverges as \( n \rightarrow \infty \). - If \( r = -1 \): The series oscillates between \( 0 \) and \( a \) depending on whether \( n \) is even or odd, thus it does not converge. ### 1.4 CASE 3: \( r=1 \) #### 1.4.1 Sum of the Geometric Series If \( r = 1 \): \[ S_{n} = a + a + a + \ldots + a = na \] Thus, the sum of the geometric series is \( S_{n} = na \). #### 1.4.2 Conjecture Regarding \( r^{n} \) and \( S_{n} \) as \( n \rightarrow \infty \) As \( n \rightarrow \infty \): - \( r^{n} = 1^{n} = 1 \) - \( S_{n} = na \rightarrow \infty \) (if \( a \neq 0 \)) ### 1.5 CASE 4: \( r=-1 \) #### 1.5.1 Sum of the Geometric Series If \( r = -1 \): \[ S_{n} = a - a + a - a + \ldots \] This series alternates between \( a \) and \( 0 \) depending on whether \( n \) is even or odd. Therefore: - If \( n \) is even, \( S_{n} = 0 \) - If \( n \) is odd, \( S_{n} = a \) #### 1.5.2 Convergence or Divergence As \( n \rightarrow \infty \): - The series does not converge to a single value; it oscillates between \( 0 \) and \( a \). Thus, it is divergent. ### 1.6 CASE 5: \( -1

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

Did you know that the concept of geometric series dates back to ancient civilizations, including the Babylonians? They used geometric principles for various applications, including construction and astronomy. The geometric series is essentially a nifty tool to understand growth rates—whether it's money, population, or even the spread of technology! Those who delve deep into math discover that throughout history, these series have been fundamental in predicting future trends and solving real-world problems. When setting up your cut paper experiment, imagine this: each time you cut, you're halving the area. This process mimics the mathematical concept of a geometric series in which each term is derived by multiplying the previous term by a constant ratio (in this case, \( \frac{1}{2} \)). To avoid pitfalls, remember to maintain your dimensions accurately; miscalculations might lead to a domino effect in your subsequent cuts. It’s all about precision—just like in geometry!

Latest Pre Calculus Questions

1.3.2 Make a conjecture with regard to \( r^{n} \) and \( S_{n} \) as \( n \rightarrow \infty \) (2) 1.4 CASE 3: \( r=1 \) 1.4.1 What is the sum of the geometric series \[ S_{n}=a+a r+a r^{2}+\ldots a r^{n-1} \text { if } r=1 ? \] 1.4.2 Make a conjecture with regard to \( r^{n} \) and \( S_{n} \) as \( n \rightarrow \infty \) 1.5 CASE 4: \( r=-1 \) 1.5.1 What is the sum of the geometric series \[ S_{n}=a+a r+a r^{2}+\ldots a r^{n-1} \text { if } r=-1 ? \] 1.5.2 Do the sums above approach some finite particular number as \( n \rightarrow \infty \) i.e. is the sequence divergent or convergent? 1.6 CASE 5: \( -1<r<1 \) REQUIREMENTS: - One A4 papers - Provided grid 1.6.1 Write THREE possible values of \( r \) such that \( -1<r<1 \). 1.6.2 Step 1. Cut the A4 size paper along the longest side into two equal Rectangles and define their areas to be 16 unit \( ^{2} \). 1.6.3 Step 2. Place one half of the rectangle in Step 1 on the desktop and cut the other half along the longest side in to two equal rectangles. 1.6.4 Step 3. Place one half of the rectangle in Step 2 on the desktop and cut the other half along the longest side into two equal rectangles. 1.6.5 Step 4. Continue with the procedures from Step 3 until you find it too difficult to fold and cut the piece of paper you are holding. 1.6.6 Step 5. The first piece of paper you placed on the desktop has an area of \( \frac{1}{2} \) the area of the A4. The second piece of paper has an area of \( \frac{1}{4} \) the area of the A4. Write the areas of the next three pieces of paper. (3) (I) 1.6.7 Explain why these areas form a geometric sequence.
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad