Pregunta
upstudy study bank question image url

Use binomial theorem to sadre \( (1-x)^{-1 / 3} \)

Ask by Parsons Bowen. in Ghana
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The expansion of \( (1 - x)^{-1/3} \) using the binomial theorem is: \[ (1 - x)^{-1/3} = 1 + \frac{1}{3}x + \frac{2}{9}x^2 - \frac{14}{81}x^3 + \cdots \]

Solución

To expand \( (1 - x)^{-1/3} \) using the binomial theorem, we can use the generalized binomial series, which states that for any real number \( n \): \[ (1 + x)^n = \sum_{k=0}^{\infty} \binom{n}{k} x^k \] where \( \binom{n}{k} = \frac{n(n-1)(n-2)\cdots(n-k+1)}{k!} \). In our case, we have \( n = -\frac{1}{3} \) and we want to expand \( (1 - x)^{-1/3} \). We can rewrite it as: \[ (1 - x)^{-1/3} = (1 + (-x))^{-1/3} \] Now, we can apply the binomial series: \[ (1 + (-x))^{-1/3} = \sum_{k=0}^{\infty} \binom{-\frac{1}{3}}{k} (-x)^k \] Next, we need to calculate the binomial coefficients \( \binom{-\frac{1}{3}}{k} \): \[ \binom{-\frac{1}{3}}{k} = \frac{-\frac{1}{3} \left(-\frac{1}{3}-1\right) \left(-\frac{1}{3}-2\right) \cdots \left(-\frac{1}{3}-(k-1)\right)}{k!} \] Now, let's compute the first few terms of the series expansion. The first few terms will give us a good approximation of the function. 1. For \( k = 0 \): \[ \binom{-\frac{1}{3}}{0} = 1 \] 2. For \( k = 1 \): \[ \binom{-\frac{1}{3}}{1} = -\frac{1}{3} \] 3. For \( k = 2 \): \[ \binom{-\frac{1}{3}}{2} = \frac{-\frac{1}{3} \cdot -\frac{4}{3}}{2!} = \frac{\frac{4}{9}}{2} = \frac{2}{9} \] 4. For \( k = 3 \): \[ \binom{-\frac{1}{3}}{3} = \frac{-\frac{1}{3} \cdot -\frac{4}{3} \cdot -\frac{7}{3}}{3!} = \frac{-\frac{28}{27}}{6} = -\frac{14}{81} \] Now we can write the first few terms of the expansion: \[ (1 - x)^{-1/3} \approx 1 - \frac{1}{3}(-x) + \frac{2}{9}(-x)^2 - \frac{14}{81}(-x)^3 + \cdots \] This simplifies to: \[ (1 - x)^{-1/3} \approx 1 + \frac{1}{3}x + \frac{2}{9}x^2 - \frac{14}{81}x^3 + \cdots \] Thus, the expansion of \( (1 - x)^{-1/3} \) using the binomial theorem is: \[ (1 - x)^{-1/3} = \sum_{k=0}^{\infty} \binom{-\frac{1}{3}}{k} (-x)^k \] with the first few terms being: \[ 1 + \frac{1}{3}x + \frac{2}{9}x^2 - \frac{14}{81}x^3 + \cdots \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

The binomial theorem states that \( (1 + x)^n = \sum_{k=0}^{\infty} \binom{n}{k} x^k \) for any real number \( n \) with \( |x| < 1 \). For \( (1 - x)^{-1/3} \), we can think of it as \( (1 + (-x))^{-1/3} \). According to the theorem, we can substitute \( n = -1/3 \) and \( x \) with \( -x \), yielding: \[ (1 - x)^{-1/3} = \sum_{k=0}^{\infty} \binom{-1/3}{k} (-x)^k = \sum_{k=0}^{\infty} \binom{-1/3}{k} (-1)^k x^k. \] The binomial coefficient \( \binom{-1/3}{k} \) can be calculated using the formula: \[ \binom{-1/3}{k} = \frac{(-1/3)(-1/3 - 1)(-1/3 - 2) \cdots (-1/3 - k + 1)}{k!}. \] Thus, we expand it as: \[ (1 - x)^{-1/3} = \sum_{k=0}^{\infty} \frac{(-1)^{k}(-1/3)(-4/3)(-7/3) \ldots \text{(for k terms)}}{k!} x^k. \] When calculating the first few terms, it becomes a playful series of fractions with fun factorial numbers dancing around with powers of \( x \)!

preguntas relacionadas

1.3.2 Make a conjecture with regard to \( r^{n} \) and \( S_{n} \) as \( n \rightarrow \infty \) (2) 1.4 CASE 3: \( r=1 \) 1.4.1 What is the sum of the geometric series \[ S_{n}=a+a r+a r^{2}+\ldots a r^{n-1} \text { if } r=1 ? \] 1.4.2 Make a conjecture with regard to \( r^{n} \) and \( S_{n} \) as \( n \rightarrow \infty \) 1.5 CASE 4: \( r=-1 \) 1.5.1 What is the sum of the geometric series \[ S_{n}=a+a r+a r^{2}+\ldots a r^{n-1} \text { if } r=-1 ? \] 1.5.2 Do the sums above approach some finite particular number as \( n \rightarrow \infty \) i.e. is the sequence divergent or convergent? 1.6 CASE 5: \( -1<r<1 \) REQUIREMENTS: - One A4 papers - Provided grid 1.6.1 Write THREE possible values of \( r \) such that \( -1<r<1 \). 1.6.2 Step 1. Cut the A4 size paper along the longest side into two equal Rectangles and define their areas to be 16 unit \( ^{2} \). 1.6.3 Step 2. Place one half of the rectangle in Step 1 on the desktop and cut the other half along the longest side in to two equal rectangles. 1.6.4 Step 3. Place one half of the rectangle in Step 2 on the desktop and cut the other half along the longest side into two equal rectangles. 1.6.5 Step 4. Continue with the procedures from Step 3 until you find it too difficult to fold and cut the piece of paper you are holding. 1.6.6 Step 5. The first piece of paper you placed on the desktop has an area of \( \frac{1}{2} \) the area of the A4. The second piece of paper has an area of \( \frac{1}{4} \) the area of the A4. Write the areas of the next three pieces of paper. (3) (I) 1.6.7 Explain why these areas form a geometric sequence.

Latest Pre Calculus Questions

1.3.2 Make a conjecture with regard to \( r^{n} \) and \( S_{n} \) as \( n \rightarrow \infty \) (2) 1.4 CASE 3: \( r=1 \) 1.4.1 What is the sum of the geometric series \[ S_{n}=a+a r+a r^{2}+\ldots a r^{n-1} \text { if } r=1 ? \] 1.4.2 Make a conjecture with regard to \( r^{n} \) and \( S_{n} \) as \( n \rightarrow \infty \) 1.5 CASE 4: \( r=-1 \) 1.5.1 What is the sum of the geometric series \[ S_{n}=a+a r+a r^{2}+\ldots a r^{n-1} \text { if } r=-1 ? \] 1.5.2 Do the sums above approach some finite particular number as \( n \rightarrow \infty \) i.e. is the sequence divergent or convergent? 1.6 CASE 5: \( -1<r<1 \) REQUIREMENTS: - One A4 papers - Provided grid 1.6.1 Write THREE possible values of \( r \) such that \( -1<r<1 \). 1.6.2 Step 1. Cut the A4 size paper along the longest side into two equal Rectangles and define their areas to be 16 unit \( ^{2} \). 1.6.3 Step 2. Place one half of the rectangle in Step 1 on the desktop and cut the other half along the longest side in to two equal rectangles. 1.6.4 Step 3. Place one half of the rectangle in Step 2 on the desktop and cut the other half along the longest side into two equal rectangles. 1.6.5 Step 4. Continue with the procedures from Step 3 until you find it too difficult to fold and cut the piece of paper you are holding. 1.6.6 Step 5. The first piece of paper you placed on the desktop has an area of \( \frac{1}{2} \) the area of the A4. The second piece of paper has an area of \( \frac{1}{4} \) the area of the A4. Write the areas of the next three pieces of paper. (3) (I) 1.6.7 Explain why these areas form a geometric sequence.
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad