Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
The Deep Dive
To solve \( (1-x)^{-1/3} \) using Pascal's Triangle, we can use the Binomial Series Expansion, which allows us to express the term as an infinite series. The general form, based on the binomial theorem, is: \[ (1-x)^n = \sum_{k=0}^{\infty} \binom{n}{k} (-x)^k \] In our case, \( n = -\frac{1}{3} \). Therefore, we expand \( (1-x)^{-1/3} \): \[ (1-x)^{-1/3} = \sum_{k=0}^{\infty} \binom{-1/3}{k} (-x)^k \] The binomial coefficient \( \binom{-1/3}{k} \) can be calculated using the formula: \[ \binom{n}{k} = \frac{n(n-1)(n-2)\cdots(n-k+1)}{k!} \] Replacing \( n \) with \( -\frac{1}{3} \) gives us the coefficients needed for the series. The first few terms look like this: - For \( k=0: \quad \binom{-1/3}{0} = 1 \) - For \( k=1: \quad \binom{-1/3}{1} = -\frac{1}{3} \) - For \( k=2: \quad \binom{-1/3}{2} = \frac{(-1/3)(-4/3)}{2} = \frac{2}{9} \) - For \( k=3: \quad \binom{-1/3}{3} = \frac{(-1/3)(-4/3)(-7/3)}{6} = -\frac{28}{162} = -\frac{14}{81} \) Putting these together, we get: \[ (1-x)^{-1/3} \approx 1 + \frac{1}{3}x + \frac{2}{9}x^2 - \frac{14}{81}x^3 + \ldots \] This series converges for \( |x| < 1 \). Enjoy exploring the magic of series expansion and see how it can transform your calculations!
