Pregunta
upstudy study bank question image url

8. Suppose function \( f \) is odd and function \( g \) is even. Is the function \[ \begin{array}{llll}\text { (a) } f g & \text { (b) } f \circ g & \text { (c) } g \circ f & \text { (d) } f-g\end{array} \]

Ask by Deleon Fowler. in South Africa
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

(a) \( f \times g \) is odd. (b) \( f \circ g \) is even. (c) \( g \circ f \) is even. (d) \( f - g \) is neither even nor odd.

Solución

We are given that f is odd, so for all x, f(–x) = –f(x), and that g is even, so for all x, g(–x) = g(x). We will examine each case. (a) The product f g:   Compute (f g)(–x):     (f g)(–x) = f(–x) · g(–x) = [–f(x)] · g(x) = – [f(x) · g(x)].   Thus, (f g)(–x) = – (f g)(x), which shows that f g is odd. (b) The composition f ∘ g, defined by f(g(x)):   Consider (f ∘ g)(–x):     (f ∘ g)(–x) = f(g(–x)).   Since g is even, we have g(–x) = g(x), so     (f ∘ g)(–x) = f(g(x)) = (f ∘ g)(x).   Thus, f ∘ g is even. (c) The composition g ∘ f, defined by g(f(x)):   Consider (g ∘ f)(–x):     (g ∘ f)(–x) = g(f(–x)).   Since f is odd, f(–x) = –f(x), and since g is even, g(–f(x)) = g(f(x)). Thus,     (g ∘ f)(–x) = g(f(x)) = (g ∘ f)(x).   So, g ∘ f is even. (d) The difference f – g:   Compute (f – g)(–x):     (f – g)(–x) = f(–x) – g(–x) = [–f(x)] – g(x) = –f(x) – g(x).   Compare this with –(f – g)(x) = –[f(x) – g(x)] = –f(x) + g(x).   Since –f(x) – g(x) ≠ –f(x) + g(x) in general, f – g is not odd.   Also, for f – g to be even we would require:     –f(x) – g(x) = f(x) – g(x) ⟹ –f(x) = f(x), which forces f(x)=0 for all x.   Thus, in general, f – g is neither even nor odd. Summary:  (a) f g is odd.  (b) f ∘ g is even.  (c) g ∘ f is even.  (d) f – g is neither even nor odd.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

Let's explore the nature of the combinations of odd and even functions! When you multiply an odd function \( f \) with an even function \( g \) (like in part (a) \( fg \)), the result is an odd function. This is because \( f(-x) = -f(x) \) and \( g(-x) = g(x) \), so \( (fg)(-x) = f(-x)g(-x) = (-f(x))(g(x)) = -fg(x) \). Now, if we apply an even function \( g \) to an odd function \( f \) (as in part (b) \( f \circ g \)), we find that the composition \( f(g(x)) \) does not guarantee a specific even or odd nature. This is because we can't simply determine the parity of the result without knowing more about how \( g \) interacts with \( f \). For part (c), \( g(f(x)) \) also doesn't yield a predictable parity since \( g \) is even and works on \( f(x) \), which is odd. Thus, the outcome can be mixed depending on the specific equations involved! Lastly, in part (d), \( f - g \) would combine odd and even functions and, intriguingly, the result \( (f-g)(-x) = f(-x) - g(-x) = -f(x) - g(x) \) yields \( -(f(x) - g(x)) \), which showcases that \( f - g \) is also odd. To summarize: - (a) \( fg \) is odd. - (b) \( f \circ g \) is mixed and needs more info. - (c) \( g \circ f \) is also mixed. - (d) \( f - g \) is odd! Understanding these properties can help you master the mathematical symphony of odd and even functions! 🎶

preguntas relacionadas

1.3.2 Make a conjecture with regard to \( r^{n} \) and \( S_{n} \) as \( n \rightarrow \infty \) (2) 1.4 CASE 3: \( r=1 \) 1.4.1 What is the sum of the geometric series \[ S_{n}=a+a r+a r^{2}+\ldots a r^{n-1} \text { if } r=1 ? \] 1.4.2 Make a conjecture with regard to \( r^{n} \) and \( S_{n} \) as \( n \rightarrow \infty \) 1.5 CASE 4: \( r=-1 \) 1.5.1 What is the sum of the geometric series \[ S_{n}=a+a r+a r^{2}+\ldots a r^{n-1} \text { if } r=-1 ? \] 1.5.2 Do the sums above approach some finite particular number as \( n \rightarrow \infty \) i.e. is the sequence divergent or convergent? 1.6 CASE 5: \( -1<r<1 \) REQUIREMENTS: - One A4 papers - Provided grid 1.6.1 Write THREE possible values of \( r \) such that \( -1<r<1 \). 1.6.2 Step 1. Cut the A4 size paper along the longest side into two equal Rectangles and define their areas to be 16 unit \( ^{2} \). 1.6.3 Step 2. Place one half of the rectangle in Step 1 on the desktop and cut the other half along the longest side in to two equal rectangles. 1.6.4 Step 3. Place one half of the rectangle in Step 2 on the desktop and cut the other half along the longest side into two equal rectangles. 1.6.5 Step 4. Continue with the procedures from Step 3 until you find it too difficult to fold and cut the piece of paper you are holding. 1.6.6 Step 5. The first piece of paper you placed on the desktop has an area of \( \frac{1}{2} \) the area of the A4. The second piece of paper has an area of \( \frac{1}{4} \) the area of the A4. Write the areas of the next three pieces of paper. (3) (I) 1.6.7 Explain why these areas form a geometric sequence.

Latest Pre Calculus Questions

1.3.2 Make a conjecture with regard to \( r^{n} \) and \( S_{n} \) as \( n \rightarrow \infty \) (2) 1.4 CASE 3: \( r=1 \) 1.4.1 What is the sum of the geometric series \[ S_{n}=a+a r+a r^{2}+\ldots a r^{n-1} \text { if } r=1 ? \] 1.4.2 Make a conjecture with regard to \( r^{n} \) and \( S_{n} \) as \( n \rightarrow \infty \) 1.5 CASE 4: \( r=-1 \) 1.5.1 What is the sum of the geometric series \[ S_{n}=a+a r+a r^{2}+\ldots a r^{n-1} \text { if } r=-1 ? \] 1.5.2 Do the sums above approach some finite particular number as \( n \rightarrow \infty \) i.e. is the sequence divergent or convergent? 1.6 CASE 5: \( -1<r<1 \) REQUIREMENTS: - One A4 papers - Provided grid 1.6.1 Write THREE possible values of \( r \) such that \( -1<r<1 \). 1.6.2 Step 1. Cut the A4 size paper along the longest side into two equal Rectangles and define their areas to be 16 unit \( ^{2} \). 1.6.3 Step 2. Place one half of the rectangle in Step 1 on the desktop and cut the other half along the longest side in to two equal rectangles. 1.6.4 Step 3. Place one half of the rectangle in Step 2 on the desktop and cut the other half along the longest side into two equal rectangles. 1.6.5 Step 4. Continue with the procedures from Step 3 until you find it too difficult to fold and cut the piece of paper you are holding. 1.6.6 Step 5. The first piece of paper you placed on the desktop has an area of \( \frac{1}{2} \) the area of the A4. The second piece of paper has an area of \( \frac{1}{4} \) the area of the A4. Write the areas of the next three pieces of paper. (3) (I) 1.6.7 Explain why these areas form a geometric sequence.
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad