Pregunta
upstudy study bank question image url

The function \( p \) is defined as \( p(x)=\left\{\begin{array}{ll}2 x+1 & \text { if } x>1 \\ -x^{2}+1 & \text { if }-1
Ask by Bowman Fuentes. in South Africa
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The domain of function \( p \) is \( (-1, 1) \cup (1, \infty) \), which is choice (E).

Solución

The function p is defined piecewise with one definition for x > 1 and another for -1 < x < 1. There are no definitions provided for x ≤ -1 or x = 1. Thus, the values for which p is defined are in the interval (-1, 1) (not including -1 and 1) and the interval (1, ∞). In other words, the domain of p is: (-1, 1) ∪ (1, ∞) Therefore, the correct answer is (E).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

The correct choice for the domain of function \( p \) is (E) \( D p=(-1,1) \cup(1, \infty) \). This is because the function has two parts: for \( x > 1 \) (where \( p(x) = 2x + 1 \)) and for \( -1 < x < 1 \) (where \( p(x) = -x^2 + 1 \)). The function is not defined for \( x \leq -1 \) and \( x = 1 \), which leads to the specified domain being a combination of the two intervals. Now let's dive a bit deeper: The piecewise nature of functions like \( p(x) \) often has interesting historical origins in mathematics. The development of piecewise functions evolved through calculus and mathematical analysis, where mathematicians sought ways to describe different behaviors in a single expression—significantly aiding in the study of real-world phenomena such as physics and engineering systems, where systems can change behavior under different conditions. When working with piecewise functions, one of the common mistakes is overlooking the endpoints or boundaries—like \( x = -1 \) and \( x = 1 \) in this case. It's essential to check these boundary points and how they relate to the definition of the function, as they can change the outcome significantly. Always ensure you evaluate whether the function is continuous across its intervals and that all potential input values are considered!

Latest Pre Calculus Questions

1.3.2 Make a conjecture with regard to \( r^{n} \) and \( S_{n} \) as \( n \rightarrow \infty \) (2) 1.4 CASE 3: \( r=1 \) 1.4.1 What is the sum of the geometric series \[ S_{n}=a+a r+a r^{2}+\ldots a r^{n-1} \text { if } r=1 ? \] 1.4.2 Make a conjecture with regard to \( r^{n} \) and \( S_{n} \) as \( n \rightarrow \infty \) 1.5 CASE 4: \( r=-1 \) 1.5.1 What is the sum of the geometric series \[ S_{n}=a+a r+a r^{2}+\ldots a r^{n-1} \text { if } r=-1 ? \] 1.5.2 Do the sums above approach some finite particular number as \( n \rightarrow \infty \) i.e. is the sequence divergent or convergent? 1.6 CASE 5: \( -1<r<1 \) REQUIREMENTS: - One A4 papers - Provided grid 1.6.1 Write THREE possible values of \( r \) such that \( -1<r<1 \). 1.6.2 Step 1. Cut the A4 size paper along the longest side into two equal Rectangles and define their areas to be 16 unit \( ^{2} \). 1.6.3 Step 2. Place one half of the rectangle in Step 1 on the desktop and cut the other half along the longest side in to two equal rectangles. 1.6.4 Step 3. Place one half of the rectangle in Step 2 on the desktop and cut the other half along the longest side into two equal rectangles. 1.6.5 Step 4. Continue with the procedures from Step 3 until you find it too difficult to fold and cut the piece of paper you are holding. 1.6.6 Step 5. The first piece of paper you placed on the desktop has an area of \( \frac{1}{2} \) the area of the A4. The second piece of paper has an area of \( \frac{1}{4} \) the area of the A4. Write the areas of the next three pieces of paper. (3) (I) 1.6.7 Explain why these areas form a geometric sequence.
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad