Factor the following expression. \[ 12 x^{2}-56 x+9 \] \( (2 x-[?])(x-\square) \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Beyond the Answer
To factor the expression \( 12 x^{2}-56 x+9 \), we first look for two numbers that multiply to \( 12 \times 9 = 108 \) and add to \(-56\). After examining the factors, we find that \( -54 \) and \( -2 \) work. This allows us to split the middle term: \[ 12x^2 - 54x - 2x + 9 \] Next, we can group the terms: \[ (12x^2 - 54x) + (-2x + 9) \] Factor out common terms from each group: \[ 6x(2x - 9) - 1(2x - 9) \] Now, factor out \( (2x - 9) \): \[ (2x - 9)(6x - 1) \] Thus, the factors are \( (2x - 9)(6x - 1) \). In the original format, this can be represented as: \( (2x - [9])(x - \frac{1}{6}) \)
