Pregunta
upstudy study bank question image url

16. Use the identity for \( \sin (x-y) \) to show that sine is an odd function (i.e., \( \sin (-x)=-\sin (x)) \). Hint: let \( x=0^{\circ} \).

Ask by Vaughan Warner. in the United States
Dec 03,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Using the identity \( \sin (x-y) = \sin x \cos y - \cos x \sin y \) with \( x=0^{\circ} \) and \( y=x \), we find \( \sin (-x) = -\sin x \), proving sine is an odd function.

Solución

To show that sine is an odd function, we need to demonstrate that \( \sin (-x) = -\sin (x) \) for all \( x \) in the domain of sine. We can use the identity for \( \sin (x-y) \) to do this. The identity is: \[ \sin (x-y) = \sin x \cos y - \cos x \sin y \] Let's set \( x = 0^{\circ} \) and \( y = x \) to apply the identity: \[ \sin (0^{\circ} - x) = \sin 0^{\circ} \cos x - \cos 0^{\circ} \sin x \] Now, we know that \( \sin 0^{\circ} = 0 \) and \( \cos 0^{\circ} = 1 \). Substituting these values into the equation, we get: \[ \sin (-x) = 0 \cdot \cos x - 1 \cdot \sin x \] \[ \sin (-x) = -\sin x \] This shows that \( \sin (-x) = -\sin (x) \), which is the definition of an odd function. Therefore, sine is an odd function.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To demonstrate that sine is an odd function using the identity for \( \sin (x-y) \), we can start by recognizing the identity itself: \[ \sin(x - y) = \sin x \cos y - \cos x \sin y. \] Now, set \( x = 0^\circ \) and \( y = x \). This gives us \( \sin(0^\circ - x) = \sin(-x) \). By applying the identity: \[ \sin(-x) = \sin(0^\circ) \cos x - \cos(0^\circ) \sin x = 0 \cdot \cos x - 1 \cdot \sin x = -\sin x. \] Thus, we find that \( \sin(-x) = -\sin x \), confirming that sine is indeed an odd function. In ancient Greece, the study of trigonometry began with the Greeks using geometry to explore the relationships among the angles and sides of triangles. The Sine function originated from the study of chords in circles, where the length of a chord was related to the angle that subtended at the center. As this knowledge spread through cultures such as India and the Islamic Golden Age, the sine function was formalized and became crucial in astronomy and navigation. In modern applications, the sine function appears everywhere! From the design of sound waves in music to the modeling of tides, sine waves are used to describe periodic phenomena. Engineers rely on these functions when analyzing signals and oscillations. Additionally, in computer graphics, sine is used for simulating realistic motion, such as the swinging of a pendulum or the rolling of waves, illustrating its importance in both theoretical and applied contexts.

Latest Trigonometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad