Pregunta
upstudy study bank question image url

There are two squares. The perimeter of Square X is half the perimeter of Square Y . How do the areas of the two squares compare? A. The area of Square X is one-sixteenth the area of Square Y . B. The area of Square X is one-eighth the area of Square Y . C. The area of Square X is one-fourth the area of Square Y . D. The area of Square X is one-half the area of Square Y .

Ask by Coleman Burton. in South Africa
Feb 17,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The area of Square X is one-fourth the area of Square Y.

Solución

Let the side of Square X be a and the side of Square Y be b. The perimeter of Square X is 4a and the perimeter of Square Y is 4b. According to the problem, 4a is half of 4b, so:   4a = (1/2) * 4b   4a = 2b   a = b/2 The area of Square X is a² and the area of Square Y is b². Substitute a = b/2 into a²:   Area of Square X = (b/2)² = b²/4 Thus, the area of Square X is one-fourth the area of Square Y. Correct answer: C. The area of Square X is one-fourth the area of Square Y.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

Let's break this down in a fun way! If the perimeter of Square X is half that of Square Y, then we can express this using the formula for perimeter (P = 4s, where s is the side length of the square). So, if Square Y has a side length of "s", its perimeter is 4s. Therefore, Square X, having a perimeter that is half, must have a side length of "s/2". Now, calculating the areas! The area of Square X would be (s/2)² = s²/4, and the area of Square Y would be s². When we compare the two areas, we find that Square X's area is indeed one-fourth that of Square Y’s area. So, the answer is C. You see, math can be a piece of cake—sweet and satisfying once you get the layers right! 🍰 Plus, discovering these relationships is a lot like piecing together a puzzle; everything starts to fit together when you look closely!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad