()) Divide. If there is a remainder, include it as a simplified fraction. \( \left(12 z^{5}+8 z^{4}\right) \div 2 z^{3} \) \( \square \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Mind Expander
To divide \( (12 z^{5}+8 z^{4}) \) by \( 2 z^{3} \), you can distribute the division across both terms in the polynomial. First, divide \( 12 z^{5} \) by \( 2 z^{3} \): \[ \frac{12 z^{5}}{2 z^{3}} = 6 z^{2} \] Next, divide \( 8 z^{4} \) by \( 2 z^{3} \): \[ \frac{8 z^{4}}{2 z^{3}} = 4 z \] Now, combine these results: \[ 6 z^{2} + 4 z \] Since there’s no remainder left after the division of both terms, the final answer is: \[ 6 z^{2} + 4 z \]
