34. Determine whether the function \( f \) is even, odd or neither. \( \begin{array}{ll}\text { (i) } f(x)=1-x^{4} & \text { (ii) } f(x)=x^{2}-x \\ \text { (iii) } f(x)=3 x^{3}+2 x-1 & \text { (iv) } f(x)=x+\frac{1}{\text { (i) }}\end{array} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Bonus Knowledge
To determine whether a function is even, odd, or neither, we can use the definitions: a function \( f(x) \) is considered even if \( f(-x) = f(x) \) for all \( x \) in the domain, and it is considered odd if \( f(-x) = -f(x) \). (i) For \( f(x) = 1 - x^4 \): Calculate \( f(-x) = 1 - (-x)^4 = 1 - x^4 = f(x) \). Thus, \( f(x) \) is **even**. (ii) For \( f(x) = x^2 - x \): Calculate \( f(-x) = (-x)^2 - (-x) = x^2 + x \). Since \( f(-x) \neq f(x) \) and \( f(-x) \neq -f(x) \), it is **neither** even nor odd. (iii) For \( f(x) = 3x^3 + 2x - 1 \): Calculate \( f(-x) = 3(-x)^3 + 2(-x) - 1 = -3x^3 - 2x - 1 \). Since \( f(-x) \neq f(x) \) and \( f(-x) = -f(x) \), therefore, \( f(x) \) is **odd**. (iv) For \( f(x) = x + \frac{1}{x} \): Calculate \( f(-x) = -x + \frac{1}{-x} = -x - \frac{1}{x} \). Since \( f(-x) \neq f(x) \) and \( f(-x) \neq -f(x) \), it is **neither** even nor odd. In summary: - \( f(x) = 1 - x^4 \) is even. - \( f(x) = x^2 - x \) is neither. - \( f(x) = 3x^3 + 2x - 1 \) is odd. - \( f(x) = x + \frac{1}{x} \) is neither.
