Pregunta
upstudy study bank question image url

5.3 Consider the following geometric series: \( 4\left(\frac{1-k}{5}\right)+8\left(\frac{1-k}{5}\right)^{2}+16\left(\frac{1-k}{5}\right)^{3} \ldots \) Determine the values of \( k \) for which the series converges

Ask by Little Vargas. in South Africa
Feb 13,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The series converges when \( k \) is between \(-\frac{3}{2}\) and \(\frac{7}{2}\).

Solución

To determine the values of \( k \) for which the given geometric series converges, we first need to identify the common ratio of the series. The series can be expressed as: \[ S = 4\left(\frac{1-k}{5}\right) + 8\left(\frac{1-k}{5}\right)^{2} + 16\left(\frac{1-k}{5}\right)^{3} + \ldots \] We can see that the first term \( a \) is \( 4\left(\frac{1-k}{5}\right) \) and the common ratio \( r \) can be determined from the second term divided by the first term: \[ r = \frac{8\left(\frac{1-k}{5}\right)^{2}}{4\left(\frac{1-k}{5}\right)} = 2\left(\frac{1-k}{5}\right) \] For a geometric series to converge, the absolute value of the common ratio must be less than 1: \[ |r| < 1 \] Substituting the expression for \( r \): \[ \left| 2\left(\frac{1-k}{5}\right) \right| < 1 \] Now, we can simplify this inequality: \[ \frac{2|1-k|}{5} < 1 \] Multiplying both sides by 5: \[ 2|1-k| < 5 \] Dividing both sides by 2: \[ |1-k| < \frac{5}{2} \] This absolute value inequality can be split into two inequalities: \[ -\frac{5}{2} < 1-k < \frac{5}{2} \] Now, we can solve these inequalities for \( k \): 1. From \( 1-k < \frac{5}{2} \): \[ -k < \frac{5}{2} - 1 \] \[ -k < \frac{3}{2} \] \[ k > -\frac{3}{2} \] 2. From \( -\frac{5}{2} < 1-k \): \[ -\frac{5}{2} < 1-k \] \[ k < 1 + \frac{5}{2} \] \[ k < \frac{7}{2} \] Combining these results, we find: \[ -\frac{3}{2} < k < \frac{7}{2} \] Thus, the values of \( k \) for which the series converges are: \[ k \in \left(-\frac{3}{2}, \frac{7}{2}\right) \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To determine the values of \( k \) for which the series converges, we first recognize that this is a geometric series. The general term of the series can be expressed as \( a_n = 4 \left(\frac{1-k}{5}\right)^n \), where \( n \) starts from 1. A geometric series converges when the absolute value of the common ratio \( r \) is less than 1. Here, the common ratio is \( r = \frac{1-k}{5} \). For convergence, we require: \[ \left| \frac{1-k}{5} \right| < 1. \] This inequality can be solved as follows: 1. Multiply both sides by 5: \( |1-k| < 5 \). 2. This splits into two inequalities: \( -5 < 1-k < 5 \). From \( 1 - k < 5 \), we have \( k > -4 \). From \( -5 < 1 - k \), we derive \( k < 6 \). Putting these inequalities together, we find that the series converges for: \[ -4 < k < 6. \] Thus, the series converges for values of \( k \) in the interval \( (-4, 6) \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad