Points: 0 of 1 Solve the equation on the interval \( 0 \leq \theta<2 \pi \). \[ 3 \sin ^{2} \theta+10 \sin \theta+7=0 \] What is the solution in the interval \( 0 \leq \theta<2 \pi \) ? Select the correct choice and fill in any answer boxes in your choice below. A. The solution set is \( \square \) \( \} \). (Simplify your answer. Type an exact answer, using \( \pi \) as needed. Type your answer in radians. Use integers or fractions for any numbers in the expression. Use a comma to separate answers as needed.) B. There is no solution.
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Beyond the Answer
To solve the equation \(3 \sin^2 \theta + 10 \sin \theta + 7 = 0\), we can start by letting \(x = \sin \theta\). This transforms our equation into a quadratic form: \[ 3x^2 + 10x + 7 = 0. \] Now, we can apply the quadratic formula \(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\), where \(a = 3\), \(b = 10\), and \(c = 7\). Calculating the discriminant: \[ b^2 - 4ac = 10^2 - 4 \cdot 3 \cdot 7 = 100 - 84 = 16. \] Now, plugging in the values into the quadratic formula: \[ x = \frac{-10 \pm \sqrt{16}}{2 \cdot 3} = \frac{-10 \pm 4}{6}. \] This gives us two possible solutions for \(x\): 1. \(x = \frac{-10 + 4}{6} = \frac{-6}{6} = -1\) 2. \(x = \frac{-10 - 4}{6} = \frac{-14}{6} = -\frac{7}{3}\) Since \(-\frac{7}{3}\) is not a valid sine value (as \( \sin \theta \) must be between \(-1\) and \(1\)), we only have one possible solution: 1. \( \sin \theta = -1 \) The sine equals \(-1\) at \[ \theta = \frac{3\pi}{2}. \] Thus, the solution in the interval \(0 \leq \theta < 2\pi\) is A. The solution set is \(\{\frac{3\pi}{2}\}\).
