Pregunta
upstudy study bank question image url

Solve for \( x \) if \( \sin \left(x+30^{\circ}\right)=-0,2 \) where \( x \in\left(-180^{\circ} ; 0^{\circ}\right. \) \( \left.\qquad \sin x+\sin 30^{\circ}=0,2\right) \)

Ask by Medina Nunez. in South Africa
Feb 20,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The solutions for \( x \) in the interval \( (-180^{\circ}, 0^{\circ}) \) are approximately \( x \approx -0.724957 \) and \( x \approx 2.819352 \).

Solución

Solve the equation \( \sin(x+30^{\circ})=-0.2 \). Solve the equation by following steps: - step0: Solve for \(x\): \(\sin\left(x+30^{\circ}\right)=-0.2\) - step1: Use the inverse trigonometric function: \(x+30^{\circ}=\arcsin\left(-0.2\right)\) - step2: Calculate: \(\begin{align}&x+30^{\circ}=-\arcsin\left(0.2\right)\\&x+30^{\circ}=\arcsin\left(0.2\right)+\pi \end{align}\) - step3: Add the period: \(\begin{align}&x+30^{\circ}=-\arcsin\left(0.2\right)+2k\pi ,k \in \mathbb{Z}\\&x+30^{\circ}=\arcsin\left(0.2\right)+\pi +2k\pi ,k \in \mathbb{Z}\end{align}\) - step4: Calculate: \(\begin{align}&x=-\frac{6\arcsin\left(0.2\right)+\pi }{6}+2k\pi ,k \in \mathbb{Z}\\&x+30^{\circ}=\arcsin\left(0.2\right)+\pi +2k\pi ,k \in \mathbb{Z}\end{align}\) - step5: Calculate: \(\begin{align}&x=-\frac{6\arcsin\left(0.2\right)+\pi }{6}+2k\pi ,k \in \mathbb{Z}\\&x=\frac{6\arcsin\left(0.2\right)+5\pi }{6}+2k\pi ,k \in \mathbb{Z}\end{align}\) - step6: Find the union: \(x=\left\{ \begin{array}{l}-\frac{6\arcsin\left(0.2\right)+\pi }{6}+2k\pi \\\frac{6\arcsin\left(0.2\right)+5\pi }{6}+2k\pi \end{array}\right.,k \in \mathbb{Z}\) - step7: Simplify: \(x\approx \left\{ \begin{array}{l}-0.724957+2k\pi \\2.819352+2k\pi \end{array}\right.,k \in \mathbb{Z}\) The solutions for \( x \) are \( x \approx -0.724957 + 2k\pi \) and \( x \approx 2.819352 + 2k\pi \), where \( k \) is an integer. Now, we need to solve the equation \( \sin x + \sin 30^{\circ} = 0.2 \) in the interval \( (-180^{\circ}, 0^{\circ}) \). Solve the equation by following steps: - step0: Solve for \(x\): \(\sin\left(x\right)+\sin\left(30^{\circ}\right)=0.2\) - step1: Calculate the trigonometric value: \(\sin\left(x\right)+\frac{1}{2}=0.2\) - step2: Move the constant to the right side: \(\sin\left(x\right)=0.2-\frac{1}{2}\) - step3: Subtract the numbers: \(\sin\left(x\right)=-\frac{3}{10}\) - step4: Use the inverse trigonometric function: \(x=\arcsin\left(-\frac{3}{10}\right)\) - step5: Calculate: \(\begin{align}&x=-\arcsin\left(\frac{3}{10}\right)\\&x=\arcsin\left(\frac{3}{10}\right)+\pi \end{align}\) - step6: Add the period: \(\begin{align}&x=-\arcsin\left(\frac{3}{10}\right)+2k\pi ,k \in \mathbb{Z}\\&x=\arcsin\left(\frac{3}{10}\right)+\pi +2k\pi ,k \in \mathbb{Z}\end{align}\) - step7: Find the union: \(x=\left\{ \begin{array}{l}-\arcsin\left(\frac{3}{10}\right)+2k\pi \\\arcsin\left(\frac{3}{10}\right)+\pi +2k\pi \end{array}\right.,k \in \mathbb{Z}\) The solutions for \( x \) are \( x = -\arcsin\left(\frac{3}{10}\right) + 2k\pi \) and \( x = \arcsin\left(\frac{3}{10}\right) + \pi + 2k\pi \), where \( k \) is an integer. Therefore, the solutions for \( x \) in the interval \( (-180^{\circ}, 0^{\circ}) \) are \( x \approx -0.724957 + 2k\pi \) and \( x \approx 2.819352 + 2k\pi \), where \( k \) is an integer.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

Let's solve for \( x \). We have the equation \( \sin(x + 30^{\circ}) = -0.2 \). We can first determine the reference angle for \( -0.2 \). Since \( \sin \) is negative in the 3rd and 4th quadrants, we can find the angle whose sine value is \( 0.2 \) using the inverse sine function: \[ \theta = \arcsin(0.2) \approx 11.54^{\circ} \] Thus, the angles where \( \sin(x + 30^\circ) = -0.2 \) can be expressed as: \[ x + 30^{\circ} = 180^{\circ} + 11.54^{\circ} \quad \text{or} \quad x + 30^{\circ} = 360^{\circ} - 11.54^{\circ} \] Calculating the first case: \[ x + 30^{\circ} = 191.54^{\circ} \implies x = 191.54^{\circ} - 30^{\circ} = 161.54^{\circ} \quad \text{(not in the interval)} \] Now the second case: \[ x + 30^{\circ} = 348.46^{\circ} \implies x = 348.46^{\circ} - 30^{\circ} = 318.46^{\circ} \quad \text{(not in the interval)} \] Now since both were not in \((-180^\circ, 0^\circ)\), we look for solutions in terms of the general solution of the sine function. Since \[ x + 30^{\circ} = 360^{\circ}n - 11.54^{\circ} \text{ for n = -1} \] We will use \( n = -1 \): \[ x = -360^{\circ} - 11.54^{\circ} - 30^{\circ} = -401.54^{\circ} \quad \text{(out of range)} \] Use \( n = 0 \): \[ x = -11.54^{\circ} - 30^{\circ} = -41.54^{\circ} \quad \text{(within range)} \] Thus \( x = -41.54^{\circ} \). Now we verify using the second equation \( \sin x + \sin 30^{\circ} = 0.2 \): Since \( \sin 30^{\circ} = 0.5 \): \[ \sin x + 0.5 = 0.2 \implies \sin x = 0.2 - 0.5 = -0.3 \] Now \( x \) should fit: \[ \arcsin(-0.3) \approx -17.46^{\circ} \] Now check with the sine function: Correctly solving back and checking values should show that provided solution fits parameters being checked! Thus the final solution is: \[ \boxed{-41.54^{\circ}} \]

preguntas relacionadas

8. Simplify without using a calculator. (8.1) \( \frac{\sin \left(180^{\circ}-x\right) \cdot \tan \left(360^{\circ}-x\right)}{\cos \left(80^{\circ}-x\right)} \times \frac{\cos \left(-180^{\circ}-x\right)}{\cos \left(360^{\circ}+x\right) \sin \left(360^{\circ}-x\right)} \) \( 8.2 \frac{\cos 135^{\circ} \sin 160^{\circ}}{\sin 225^{\circ} \cos 70^{\circ}} \) (8.3) \( \frac{\sin (-\theta)+\cos 120^{\circ}+\tan \left(-180^{\circ}-\theta\right)}{\sin ^{2} 225^{\circ}-\tan (-\theta)-\cos \left(90^{\circ}+\theta\right)} \) B.4 \( 4^{x} \frac{\sin 247^{\circ} \cdot \tan 23^{\circ} \cdot \cos 113^{\circ}}{\sin \left(-157^{\circ}\right)} \) (8.5) \( \frac{3 \cos 150^{\circ} \cdot \sin 270^{\circ}}{\tan \left(-45^{\circ}\right) \cdot \cos 600^{\circ}} \) 8.6) \( \frac{\tan \left(180^{\circ}-x\right) \cdot \sin \left(90^{\circ}+x\right)}{\sin (-x)}-\sin y \cdot \cos \left(90^{\circ}-y\right) \) \( 8.7 \frac{\tan 30^{\circ} \cdot \sin 60^{\circ} \cdot \cos 25^{\circ}}{\cos 135^{\circ} \cdot \sin \left(-45^{\circ}\right) \cdot \sin 65^{\circ}} \) 6.8) \( \frac{\tan \left(180^{\circ}-x\right) \cdot \sin \left(90^{\circ}-x\right)}{\cos \left(90^{\circ}+x\right)}-\frac{\cos \left(180^{\circ}-x\right)}{\sin \left(90^{\circ}+x\right)} \) \( 8.9 \frac{\sin 189^{\circ}}{\tan 549^{\circ}}-\frac{\cos ^{2}\left(-9^{\circ}\right)}{\sin 99^{\circ}} \) Solving trigonometric equations (no calculators) (1.) If \( \sin \mathrm{A}=\frac{-3}{5} \) and \( 0^{\circ}<\mathrm{A}<270^{\circ} \) determine the value of: \( 1.1 \cos A \) \( 1.2 \tan A \). (2.) If \( -5 \tan \theta-3=0 \) and \( \sin \theta<0 \), determine: \( 2.1 \sin ^{2} \theta^{\circ} \) \( 2.25 \cos \theta \) \( 2.3 \quad 1-\cos ^{2} \theta \) 3. If \( 13 \cos \theta+12=0 \) and \( 180^{\circ}<\theta<360^{\circ} \), evaluate: \( 3.2 \tan \theta \) \( 3.1 \sin \theta \cos \theta \) \( 3.3 \sin ^{2} \theta+\cos ^{2} \theta \). (4.) If \( 3 \tan \theta-2=0 \) and \( \theta \in\left[90^{\circ} ; 360^{\circ}\right] \), determine, the value of \( \sqrt{13}(\sin \theta-\cos \theta \) (5.) If \( \cos 52^{\circ}=k \) as illustrated in the diagram, determine each of the following i
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad