Solve the equation with rational exponents. \[ \left(x^{2}-x-14\right)^{3 / 4}-5=3 \] Select the correct choice below and, il necessary, fill in the answer box to complete your choice. \( \begin{array}{l}\text { (i) A. The solution(s) is (are) } x=\square . \\ \text { (Simplity your answer. Use a comma to separate answers as needed.) } \\ \text { B. There is no solution. }\end{array} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Mind Expander
To solve the equation \(\left(x^{2}-x-14\right)^{3 / 4}-5=3\), we start by isolating the expression with the rational exponent: \[ \left(x^{2}-x-14\right)^{3 / 4} = 3 + 5 = 8 \] Next, we can eliminate the exponent by raising both sides to the power of \(\frac{4}{3}\): \[ x^{2}-x-14 = 8^{4/3} \] Calculating \(8^{4/3}\) gives us \( (2^3)^{4/3} = 2^4 = 16\): \[ x^{2}-x-14 = 16 \] Now, we rearrange the equation: \[ x^{2} - x - 16 - 14 = 0 \quad \Rightarrow \quad x^{2} - x - 30 = 0 \] Next, we factor the quadratic: \[ (x - 6)(x + 5) = 0 \] Setting each factor to zero gives us the solutions: \[ x - 6 = 0 \quad \Rightarrow \quad x = 6 \] \[ x + 5 = 0 \quad \Rightarrow \quad x = -5 \] Thus, the solutions are: \[ x = 6, -5 \] Now, we can fill in the answer choice accordingly. (i) A. The solution(s) is (are) \(x = 6, -5\).
