Pregunta
upstudy study bank question image url

Example 1 Given: \( f(x)=3 x^{2} \) 1.1 Determine the equation of the inverse of \( f(x) \) in the form \( y=\cdots \) 1.2 For what values of \( x \) is \( f(x) \) equal to its inverse? 1.3 Draw the graphs of \( f(x) \) and its inverse on the same set of axes. 1.4 Explain why the inverse is not a function. 1.5 How can you restrict the domain of \( f(x) \) so that its inverse is a function?

Ask by Nguyen Fitzgerald. in South Africa
Feb 20,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

To find the inverse of \( f(x) = 3x^2 \): 1. **Inverse Equation**: \( f^{-1}(x) = \sqrt{\frac{x}{3}} \) (for \( x \geq 0 \)) 2. **Values Where \( f(x) = f^{-1}(x) \)**: \( x = 0 \) and \( x = \frac{1}{3} \) 3. **Graphs**: Plot \( f(x) = 3x^2 \) and \( f^{-1}(x) = \sqrt{\frac{x}{3}} \) on the same axes. 4. **Inverse Not a Function**: Because for each positive \( y \), there are two \( x \) values in \( f(x) \). 5. **Restrict Domain**: Limit \( x \) to \( x \geq 0 \) to make the inverse a function. Here are the graphs: - **\( f(x) = 3x^2 \)**: A parabola opening upwards. - **\( f^{-1}(x) = \sqrt{\frac{x}{3}} \)**: A curve starting at the origin and increasing. The graphs intersect at \( (0, 0) \) and \( \left(\frac{1}{3}, 1\right) \).

Solución

It seems that I am unable to plot the graphs directly. However, I can guide you on how to plot them using graphing software or a graphing calculator. ### Steps to Plot the Graphs 1. **Graph of \( f(x) = 3x^2 \)**: - Plot the function for \( x \) values ranging from -2 to 2. - The points to consider are: - \( f(0) = 0 \) - \( f(1) = 3 \) - \( f(-1) = 3 \) - The graph will be a parabola opening upwards. 2. **Graph of \( f^{-1}(x) = \sqrt{\frac{x}{3}} \)**: - Plot the function for \( x \) values ranging from 0 to 6. - The points to consider are: - \( f^{-1}(0) = 0 \) - \( f^{-1}(1) = \sqrt{\frac{1}{3}} \approx 0.577 \) - \( f^{-1}(3) = 1 \) - The graph will be a curve starting from the origin and increasing. ### Conclusion - The graph of \( f(x) \) will show a parabola, while the graph of \( f^{-1}(x) \) will be a curve that increases but is only defined for non-negative \( x \). - The intersection points at \( (0, 0) \) and \( \left(\frac{1}{3}, 1\right) \) indicate where the function equals its inverse. If you have access to graphing software or a graphing calculator, you can input these functions to visualize them. If you need further assistance or have any other questions, feel free to ask!

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the inverse of the function \( f(x)=3x^{2} \), you start by replacing \( f(x) \) with \( y \): \[ y = 3x^2 \] Now, swap \( x \) and \( y \): \[ x = 3y^2 \] Solving for \( y \), we get: \[ y = \sqrt{\frac{x}{3}} \] So the inverse is: \[ f^{-1}(x) = \sqrt{\frac{x}{3}} \] For \( f(x) \) to equal its inverse, set \( 3x^{2} = \sqrt{\frac{x}{3}} \). Squaring both sides and simplifying gives solutions at \( x = 0 \) and \( x = \frac{1}{3} \) after checking the validity of each solution in both functions, confirming that this equation holds true. When graphing both functions, you will see \( f(x) \) is a parabola opening upwards, while \( f^{-1}(x) \) is a rightward-opening sideways parabola. They intersect at points like the origin and the value explained above, emphasizing symmetry. The inverse function isn’t a function itself since it fails the horizontal line test; every \( y \) value corresponds to more than one \( x \) value (negative and positive roots for \( y \)). Restricting the domain of \( f(x) \) to \( x \geq 0 \) or \( x \leq 0 \) allows the inverse to become a function since each \( y \) value will only correspond to one \( x \) value, making it valid. Making \( f(x) = 3x^2 \) a one-to-one function helps solve the inverse issue while maintaining the relationships intact.

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad