\[ f(x)=-\sin \left(x-\frac{\pi}{4}\right) \] \[ \text { Amplitude: A } \] \[ \text { Period: } \mathrm{P} \]
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Extra Insights
The amplitude \( A \) of the function \( f(x) = -\sin\left(x - \frac{\pi}{4}\right) \) is the maximum distance from the midline to the peak (or trough) of the wave. For this sine function, the amplitude is simply \( A = 1 \). Note that the negative sign means the graph is reflected over the x-axis, but it doesn’t change the amplitude itself. The period \( P \) of a sine function is determined by the coefficient of \( x \) inside the sine. In this case, since there is no coefficient multiplying \( x \), the period remains the default value of \( P = 2\pi \). Therefore, no matter how the function is shifted or reflected, it still completes a full cycle every \( 2\pi \) units along the x-axis.
