Q8) Find the term contains \( x^{4} \) in the expansion of \( \left(x^{2}-\frac{1}{x^{2}}\right)^{12} \) according to the descending powers of \( x \), then find the ratio between the coefficient of this term and the middle term.
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
The Deep Dive
To find the term that contains \( x^{4} \) in the expansion of \( \left(x^{2} - \frac{1}{x^{2}}\right)^{12} \), we can apply the binomial theorem. The general term in the expansion can be written as: \[ T_k = \binom{12}{k} (x^{2})^{12-k} \left(-\frac{1}{x^{2}}\right)^k = \binom{12}{k} (-1)^k x^{2(12-k)} x^{-2k} \] This simplifies to: \[ T_k = \binom{12}{k} (-1)^k x^{24 - 4k} \] We need \( 24 - 4k = 4 \) to find the term that contains \( x^4 \): \[ 24 - 4k = 4 \implies 20 = 4k \implies k = 5 \] Now, substituting \( k = 5 \) into the expression for \( T_k \): \[ T_5 = \binom{12}{5} (-1)^5 x^{4} = -\binom{12}{5} x^{4} \] Now, we need the coefficient of this term: \[ \text{Coefficient} = -\binom{12}{5} \] Next, let's find the middle term of the expansion of \( \left(x^{2} - \frac{1}{x^{2}}\right)^{12} \). Since there are 13 terms in total, the middle term (the 7th term) will be: \[ T_6 = \binom{12}{6} (x^{2})^{12-6} \left(-\frac{1}{x^{2}}\right)^6 = \binom{12}{6} (-1)^6 x^{12 - 12} = \binom{12}{6} \] The coefficient of the middle term is: \[ \text{Coefficient of middle term} = \binom{12}{6} \] Now, we want to find the ratio of the coefficients of the term containing \( x^{4} \) and the middle term: \[ \text{Ratio} = \frac{-\binom{12}{5}}{\binom{12}{6}} = -\frac{\binom{12}{5}}{\binom{12}{6}} \] Using the relationship \( \binom{n}{k} = \frac{n!}{k!(n-k)!} \): \[ \frac{\binom{12}{5}}{\binom{12}{6}} = \frac{6}{12 - 5} = \frac{6}{7} \] Thus, the ratio is: \[ \text{Ratio} = -\frac{6}{7} \] Final Answer: The term containing \( x^{4} \) has a coefficient of \( -\binom{12}{5} \) and the middle term has a coefficient of \( \binom{12}{6} \), giving a ratio of \( -\frac{6}{7} \).
