Pregunta
upstudy study bank question image url

Determine the remaining sides and angles of the triangle ABC. \( \mathrm{c}=6 \mathrm{mi}, \mathrm{B}=37.89^{\circ}, \mathrm{C}=34.67^{\circ} \) Find the measure of angle A . \( \mathrm{A}=\square^{\circ} \) (Type an integer or a decimal.) Find the length of side a. \( \mathrm{a}=\square \mathrm{mi} \) (Round to the nearest mile as needed.) Find the length of side b. \( \mathrm{b}=\square \mathrm{mi} \) (Round to the nearest mile as needed.)

Ask by Hammond Wood. in the United States
Nov 23,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Angle A is approximately \(107.44^\circ\), side a is approximately \(10\) miles, and side b is approximately \(6\) miles.

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Respondido por UpStudy AI y revisado por un tutor profesional

Mind Expander

To find the remaining sides and angles of triangle ABC, we start with angle A. Since the sum of angles in a triangle is always 180 degrees, we can calculate angle A as follows: \[ A = 180^\circ - (B + C) = 180^\circ - (37.89^\circ + 34.67^\circ) = 107.44^\circ \] Now we have: \( A = 107.44^{\circ} \) Next, we find the lengths of sides a and b using the Law of Sines, which states: \[ \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} \] First, we calculate side b: \[ \frac{b}{\sin B} = \frac{c}{\sin C} \Rightarrow b = \frac{c \cdot \sin B}{\sin C} = \frac{6 \cdot \sin(37.89^\circ)}{\sin(34.67^\circ)} \] Calculating further: Using approximate values for the sine functions, \(\sin(37.89^\circ) \approx 0.610\) and \(\sin(34.67^\circ) \approx 0.574\): \[ b \approx \frac{6 \cdot 0.610}{0.574} \approx 6.37 \text{ mi} \quad \text{(rounding gives } b \approx 6 \text{ mi)} \] Now we calculate side a: \[ \frac{a}{\sin A} = \frac{c}{\sin C} \Rightarrow a = \frac{c \cdot \sin A}{\sin C} = \frac{6 \cdot \sin(107.44^\circ)}{\sin(34.67^\circ)} \] Using \(\sin(107.44^\circ) \approx 0.943\): \[ a \approx \frac{6 \cdot 0.943}{0.574} \approx 9.83 \text{ mi} \quad \text{(rounding gives } a \approx 10 \text{ mi)} \] In summary: \( A = 107.44^{\circ}, \quad a \approx 10 \text{ mi}, \quad b \approx 6 \text{ mi} \)

preguntas relacionadas

8. Simplify without using a calculator. (8.1) \( \frac{\sin \left(180^{\circ}-x\right) \cdot \tan \left(360^{\circ}-x\right)}{\cos \left(80^{\circ}-x\right)} \times \frac{\cos \left(-180^{\circ}-x\right)}{\cos \left(360^{\circ}+x\right) \sin \left(360^{\circ}-x\right)} \) \( 8.2 \frac{\cos 135^{\circ} \sin 160^{\circ}}{\sin 225^{\circ} \cos 70^{\circ}} \) (8.3) \( \frac{\sin (-\theta)+\cos 120^{\circ}+\tan \left(-180^{\circ}-\theta\right)}{\sin ^{2} 225^{\circ}-\tan (-\theta)-\cos \left(90^{\circ}+\theta\right)} \) B.4 \( 4^{x} \frac{\sin 247^{\circ} \cdot \tan 23^{\circ} \cdot \cos 113^{\circ}}{\sin \left(-157^{\circ}\right)} \) (8.5) \( \frac{3 \cos 150^{\circ} \cdot \sin 270^{\circ}}{\tan \left(-45^{\circ}\right) \cdot \cos 600^{\circ}} \) 8.6) \( \frac{\tan \left(180^{\circ}-x\right) \cdot \sin \left(90^{\circ}+x\right)}{\sin (-x)}-\sin y \cdot \cos \left(90^{\circ}-y\right) \) \( 8.7 \frac{\tan 30^{\circ} \cdot \sin 60^{\circ} \cdot \cos 25^{\circ}}{\cos 135^{\circ} \cdot \sin \left(-45^{\circ}\right) \cdot \sin 65^{\circ}} \) 6.8) \( \frac{\tan \left(180^{\circ}-x\right) \cdot \sin \left(90^{\circ}-x\right)}{\cos \left(90^{\circ}+x\right)}-\frac{\cos \left(180^{\circ}-x\right)}{\sin \left(90^{\circ}+x\right)} \) \( 8.9 \frac{\sin 189^{\circ}}{\tan 549^{\circ}}-\frac{\cos ^{2}\left(-9^{\circ}\right)}{\sin 99^{\circ}} \) Solving trigonometric equations (no calculators) (1.) If \( \sin \mathrm{A}=\frac{-3}{5} \) and \( 0^{\circ}<\mathrm{A}<270^{\circ} \) determine the value of: \( 1.1 \cos A \) \( 1.2 \tan A \). (2.) If \( -5 \tan \theta-3=0 \) and \( \sin \theta<0 \), determine: \( 2.1 \sin ^{2} \theta^{\circ} \) \( 2.25 \cos \theta \) \( 2.3 \quad 1-\cos ^{2} \theta \) 3. If \( 13 \cos \theta+12=0 \) and \( 180^{\circ}<\theta<360^{\circ} \), evaluate: \( 3.2 \tan \theta \) \( 3.1 \sin \theta \cos \theta \) \( 3.3 \sin ^{2} \theta+\cos ^{2} \theta \). (4.) If \( 3 \tan \theta-2=0 \) and \( \theta \in\left[90^{\circ} ; 360^{\circ}\right] \), determine, the value of \( \sqrt{13}(\sin \theta-\cos \theta \) (5.) If \( \cos 52^{\circ}=k \) as illustrated in the diagram, determine each of the following i
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad