Pregunta
upstudy study bank question image url

b) Which of the points below is equivalent to \( \left(2,120^{\circ}\right) \) ? Select all that apply. \( \square \) A. \( \left(-2,480^{\circ}\right) \) \( \square \) B. \( \left(-2,300^{\circ}\right) \) \( \square \) C. \( \left(-2,120^{\circ}\right) \) \( \square \) D. \( \left(2,480^{\circ}\right) \)

Ask by Bird Todd. in the United States
Nov 18,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The points equivalent to \( \left(2,120^{\circ}\right) \) are A, C, and D.

Solución

To find which of the given points is equivalent to \( \left(2,120^{\circ}\right) \), we need to understand that the polar coordinates \((r, \theta)\) represent a point in the polar coordinate system. The point \( \left(2,120^{\circ}\right) \) means that the point is 2 units away from the origin and at an angle of \(120^{\circ}\) counterclockwise from the positive x-axis. Now, let's analyze each of the given points: A. \( \left(-2,480^{\circ}\right) \) - This point is 2 units away from the origin and at an angle of \(480^{\circ}\) counterclockwise from the positive x-axis. Since \(480^{\circ}\) is equivalent to \(120^{\circ}\) (as \(480^{\circ} = 120^{\circ} + 360^{\circ}\)), this point is equivalent to \( \left(2,120^{\circ}\right) \). B. \( \left(-2,300^{\circ}\right) \) - This point is 2 units away from the origin and at an angle of \(300^{\circ}\) counterclockwise from the positive x-axis. Since \(300^{\circ}\) is not equivalent to \(120^{\circ}\), this point is not equivalent to \( \left(2,120^{\circ}\right) \). C. \( \left(-2,120^{\circ}\right) \) - This point is 2 units away from the origin and at an angle of \(120^{\circ}\) counterclockwise from the positive x-axis. This point is equivalent to \( \left(2,120^{\circ}\right) \). D. \( \left(2,480^{\circ}\right) \) - This point is 2 units away from the origin and at an angle of \(480^{\circ}\) counterclockwise from the positive x-axis. Since \(480^{\circ}\) is equivalent to \(120^{\circ}\), this point is equivalent to \( \left(2,120^{\circ}\right) \). Therefore, the points that are equivalent to \( \left(2,120^{\circ}\right) \) are A, C, and D.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find points equivalent to \( \left(2,120^{\circ}\right) \), we must look for points that have the same angle (modulo 360°) and same distance from the origin. Since \( 120^{\circ} \) is the same as \( 120^{\circ} + 360^{\circ}k \) for integer \( k \), we can manipulate the angles to find equivalents. - For \( A \): The angle \( 480^{\circ} - 360^{\circ} = 120^{\circ} \), so \( \left(-2,480^{\circ}\right) \) is equivalent. - For \( B \): The angle \( 300^{\circ} \) does not equal \( 120^{\circ} \) or any rotations thereof, so it is not equivalent. - For \( C \): The angle \( -120^{\circ} \) can be rewritten as \( 120^{\circ} + 360^{\circ}(-1) = 240^{\circ} \), which does not match \( 120^{\circ} \). Thus, it is not equivalent. - For \( D \): The angle \( 480^{\circ} \), as calculated before, corresponds to \( 120^{\circ} \). Thus, \( \left(2,480^{\circ}\right) \) is equivalent. In conclusion, the equivalent points are \( A \) and \( D \).

preguntas relacionadas

8. Simplify without using a calculator. (8.1) \( \frac{\sin \left(180^{\circ}-x\right) \cdot \tan \left(360^{\circ}-x\right)}{\cos \left(80^{\circ}-x\right)} \times \frac{\cos \left(-180^{\circ}-x\right)}{\cos \left(360^{\circ}+x\right) \sin \left(360^{\circ}-x\right)} \) \( 8.2 \frac{\cos 135^{\circ} \sin 160^{\circ}}{\sin 225^{\circ} \cos 70^{\circ}} \) (8.3) \( \frac{\sin (-\theta)+\cos 120^{\circ}+\tan \left(-180^{\circ}-\theta\right)}{\sin ^{2} 225^{\circ}-\tan (-\theta)-\cos \left(90^{\circ}+\theta\right)} \) B.4 \( 4^{x} \frac{\sin 247^{\circ} \cdot \tan 23^{\circ} \cdot \cos 113^{\circ}}{\sin \left(-157^{\circ}\right)} \) (8.5) \( \frac{3 \cos 150^{\circ} \cdot \sin 270^{\circ}}{\tan \left(-45^{\circ}\right) \cdot \cos 600^{\circ}} \) 8.6) \( \frac{\tan \left(180^{\circ}-x\right) \cdot \sin \left(90^{\circ}+x\right)}{\sin (-x)}-\sin y \cdot \cos \left(90^{\circ}-y\right) \) \( 8.7 \frac{\tan 30^{\circ} \cdot \sin 60^{\circ} \cdot \cos 25^{\circ}}{\cos 135^{\circ} \cdot \sin \left(-45^{\circ}\right) \cdot \sin 65^{\circ}} \) 6.8) \( \frac{\tan \left(180^{\circ}-x\right) \cdot \sin \left(90^{\circ}-x\right)}{\cos \left(90^{\circ}+x\right)}-\frac{\cos \left(180^{\circ}-x\right)}{\sin \left(90^{\circ}+x\right)} \) \( 8.9 \frac{\sin 189^{\circ}}{\tan 549^{\circ}}-\frac{\cos ^{2}\left(-9^{\circ}\right)}{\sin 99^{\circ}} \) Solving trigonometric equations (no calculators) (1.) If \( \sin \mathrm{A}=\frac{-3}{5} \) and \( 0^{\circ}<\mathrm{A}<270^{\circ} \) determine the value of: \( 1.1 \cos A \) \( 1.2 \tan A \). (2.) If \( -5 \tan \theta-3=0 \) and \( \sin \theta<0 \), determine: \( 2.1 \sin ^{2} \theta^{\circ} \) \( 2.25 \cos \theta \) \( 2.3 \quad 1-\cos ^{2} \theta \) 3. If \( 13 \cos \theta+12=0 \) and \( 180^{\circ}<\theta<360^{\circ} \), evaluate: \( 3.2 \tan \theta \) \( 3.1 \sin \theta \cos \theta \) \( 3.3 \sin ^{2} \theta+\cos ^{2} \theta \). (4.) If \( 3 \tan \theta-2=0 \) and \( \theta \in\left[90^{\circ} ; 360^{\circ}\right] \), determine, the value of \( \sqrt{13}(\sin \theta-\cos \theta \) (5.) If \( \cos 52^{\circ}=k \) as illustrated in the diagram, determine each of the following i
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad