Pregunta
upstudy study bank question image url

\( f(x)=x^{2}-14 x+24 \) 2. Which statement below is true for all parabolas and will prove useful in finding the vertex? Parabolas are symmetrical. The vertex lies on the line of symmetry. The vertex is equidistant from each of \( x \)-intercepts. the 6

Ask by Dunn Cruz. in the United States
Feb 18,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

All three statements are true for parabolas, but the most important one is that the vertex lies on the line of symmetry.

Solución

To analyze the function \( f(x) = x^2 - 14x + 24 \) and determine which statement is true for all parabolas, let's break down the properties of parabolas and their vertices. 1. **Parabolas are symmetrical**: This is true. Parabolas are symmetric about their axis of symmetry. 2. **The vertex lies on the line of symmetry**: This is also true. The vertex of a parabola is located on its axis of symmetry. 3. **The vertex is equidistant from each of \( x \)-intercepts**: This is true as well. The vertex is the midpoint of the \( x \)-intercepts. Now, let's find the vertex of the given parabola to illustrate these properties. The vertex \( (h, k) \) of a parabola given in the standard form \( f(x) = ax^2 + bx + c \) can be found using the formula: \[ h = -\frac{b}{2a} \] where \( a = 1 \) and \( b = -14 \). Let's calculate \( h \): \[ h = -\frac{-14}{2 \cdot 1} = \frac{14}{2} = 7 \] Next, we can find \( k \) by substituting \( h \) back into the function: \[ k = f(7) = 7^2 - 14 \cdot 7 + 24 \] Calculating \( k \): \[ k = 49 - 98 + 24 = -25 \] Thus, the vertex of the parabola is \( (7, -25) \). ### Conclusion All three statements are true for parabolas, but the most fundamental and universally applicable statement is: **The vertex lies on the line of symmetry.** This statement is essential for finding the vertex of any parabola.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

Parabolas exhibit a delightful symmetry, with each side mirroring the other like a perfectly folded piece of paper. This quality means that if you were to draw a vertical line through the vertex, it would divide the parabola into two identical halves, making it easier to analyze its properties! Moreover, the vertex of a parabola is indeed positioned right on the line of symmetry. This line can be found using the formula \( x = -\frac{b}{2a} \) from the standard quadratic equation \( ax^2 + bx + c \). Understanding this concept is crucial as it helps not only in locating the vertex but also in sketching accurate graphs of parabolas!

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad