Pregunta
ind the vertical asymptotes (if any) of the graph of the function. (Use \( n \) as an arbitrary Integer If necessary. If an answer does not exist, enter O. On \[ f(x)=5 \tan (\pi x) \] \( =\square \) Need Help? Rendit Watchli
Ask by Hamilton Salinas. in the United States
Feb 21,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
The vertical asymptotes of \( f(x) = 5 \tan(\pi x) \) are at \( x = \frac{1}{2} + n \) for any integer \( n \).
Solución
To find the vertical asymptotes of the function \( f(x) = 5 \tan(\pi x) \), we need to determine where the tangent function is undefined. The tangent function has vertical asymptotes at the points where its argument is equal to \( \frac{\pi}{2} + n\pi \), where \( n \) is any integer.
1. **Set the argument of the tangent function equal to the points of discontinuity:**
\[
\pi x = \frac{\pi}{2} + n\pi
\]
2. **Solve for \( x \):**
\[
x = \frac{1}{2} + n
\]
This means that the vertical asymptotes of the function \( f(x) = 5 \tan(\pi x) \) occur at:
\[
x = \frac{1}{2} + n \quad \text{for any integer } n
\]
Thus, the vertical asymptotes are located at \( x = \frac{1}{2}, \frac{3}{2}, \frac{5}{2}, \ldots \) and so on, in both directions.
In conclusion, the vertical asymptotes of the function are:
\[
\boxed{\frac{1}{2} + n}
\] where \( n \) is any integer.
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


Extra Insights
To find the vertical asymptotes of the function \( f(x) = 5 \tan(\pi x) \), we need to identify where the tangent function is undefined, which occurs at odd multiples of \( \frac{\pi}{2} \). This means we set: \[ \pi x = \frac{\pi}{2} + n\pi \] for odd integers \( n \). Simplifying this gives: \[ x = \frac{1}{2} + n \] Thus, the vertical asymptotes occur at \( x = \frac{1}{2} + n \) where \( n \) is any integer. Therefore, the result is: \[ \text{Vertical Asymptotes: } x = \frac{1}{2} + n \text{ (for } n \in \mathbb{Z}\text{)} \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium