Pregunta
upstudy study bank question image url

how to solve questions related to the topic 'applications of trigonometry' \& solving bearing problems, finding the angles of elevation and depression, simple three-dimensional problems.

Ask by Brewer Vaughn. in Singapore
Feb 11,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

To solve trigonometry problems, including bearing, elevation, and depression, and three-dimensional issues, follow these steps: 1. **Understand Trigonometric Ratios**: Use sine, cosine, and tangent to relate sides and angles. 2. **Bearing Problems**: Draw diagrams, mark bearings, and apply trigonometric ratios to find unknowns. 3. **Angles of Elevation and Depression**: Use the tangent function to find angles based on height and distance. 4. **Three-Dimensional Problems**: Apply the distance formula in 3D and trigonometric ratios to find angles and distances. **Example**: If a tower is 50 meters tall and the angle of elevation from a point is 30°, the distance from the point to the base is approximately 86.6 meters. This approach helps in solving various trigonometry-related problems effectively.

Solución

To solve questions related to the applications of trigonometry, including bearing problems, angles of elevation and depression, and simple three-dimensional problems, follow these steps: ### 1. Understanding the Basics - **Trigonometric Ratios**: Familiarize yourself with sine, cosine, and tangent ratios: - \( \sin(\theta) = \frac{\text{opposite}}{\text{hypotenuse}} \) - \( \cos(\theta) = \frac{\text{adjacent}}{\text{hypotenuse}} \) - \( \tan(\theta) = \frac{\text{opposite}}{\text{adjacent}} \) - **Angles of Elevation and Depression**: - **Angle of Elevation**: The angle formed by the line of sight when looking up at an object. - **Angle of Depression**: The angle formed by the line of sight when looking down at an object. ### 2. Solving Bearing Problems - **Bearings**: Bearings are measured in degrees from the north direction (clockwise). - For example, a bearing of \( 30^\circ \) means \( 30^\circ \) clockwise from north. - **Steps to Solve**: 1. Draw a diagram to represent the situation. 2. Mark the bearings and angles clearly. 3. Use trigonometric ratios to find unknown distances or angles. ### 3. Finding Angles of Elevation and Depression - **Steps to Solve**: 1. Identify the height of the object and the distance from the observer. 2. Use the tangent function: - For angle of elevation: \( \tan(\theta) = \frac{\text{height}}{\text{distance}} \) - For angle of depression: The same formula applies, but the height will be negative if you consider the observer's line of sight. ### 4. Simple Three-Dimensional Problems - **Understanding 3D Geometry**: Familiarize yourself with the concepts of 3D shapes, coordinates, and distances. - **Steps to Solve**: 1. Identify the coordinates of the points involved. 2. Use the distance formula in 3D: \[ d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2} \] 3. Apply trigonometric ratios to find angles between lines or planes. ### Example Problem **Problem**: A tower is 50 meters tall. From a point on the ground, the angle of elevation to the top of the tower is \( 30^\circ \). Find the distance from the point to the base of the tower. **Solution**: 1. Let \( h = 50 \) meters (height of the tower). 2. Let \( d \) be the distance from the point to the base of the tower. 3. Using the tangent function: \[ \tan(30^\circ) = \frac{h}{d} \] \[ \tan(30^\circ) = \frac{50}{d} \] 4. Rearranging gives: \[ d = \frac{50}{\tan(30^\circ)} \] 5. Calculate \( d \) using the known value of \( \tan(30^\circ) = \frac{1}{\sqrt{3}} \): \[ d = 50 \cdot \sqrt{3} \approx 86.6 \text{ meters} \] ### Conclusion By following these steps and understanding the principles of trigonometry, you can effectively solve problems related to bearings, angles of elevation and depression, and three-dimensional geometry. Practice with various problems to strengthen your skills.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

Trigonometry has a rich historical background dating back to ancient civilizations, where it was used in astronomy and architecture. The Greeks, particularly Hipparchus and Ptolemy, made significant contributions by developing tables for chords in a circle, which laid the groundwork for modern trigonometric functions. Understanding this history can give you important context for why trigonometric principles are essential in fields like navigation and engineering today. When tackling problems related to angles of elevation and depression, a common mistake is to confuse the two. Angles of elevation are measured upwards from the horizontal, while angles of depression are measured downwards. Always sketch a diagram to visualize the problem correctly and label your angles and distances clearly. This will help you better understand the relationships between the sides of the triangles involved, making calculations much smoother.

preguntas relacionadas

8. Simplify without using a calculator. (8.1) \( \frac{\sin \left(180^{\circ}-x\right) \cdot \tan \left(360^{\circ}-x\right)}{\cos \left(80^{\circ}-x\right)} \times \frac{\cos \left(-180^{\circ}-x\right)}{\cos \left(360^{\circ}+x\right) \sin \left(360^{\circ}-x\right)} \) \( 8.2 \frac{\cos 135^{\circ} \sin 160^{\circ}}{\sin 225^{\circ} \cos 70^{\circ}} \) (8.3) \( \frac{\sin (-\theta)+\cos 120^{\circ}+\tan \left(-180^{\circ}-\theta\right)}{\sin ^{2} 225^{\circ}-\tan (-\theta)-\cos \left(90^{\circ}+\theta\right)} \) B.4 \( 4^{x} \frac{\sin 247^{\circ} \cdot \tan 23^{\circ} \cdot \cos 113^{\circ}}{\sin \left(-157^{\circ}\right)} \) (8.5) \( \frac{3 \cos 150^{\circ} \cdot \sin 270^{\circ}}{\tan \left(-45^{\circ}\right) \cdot \cos 600^{\circ}} \) 8.6) \( \frac{\tan \left(180^{\circ}-x\right) \cdot \sin \left(90^{\circ}+x\right)}{\sin (-x)}-\sin y \cdot \cos \left(90^{\circ}-y\right) \) \( 8.7 \frac{\tan 30^{\circ} \cdot \sin 60^{\circ} \cdot \cos 25^{\circ}}{\cos 135^{\circ} \cdot \sin \left(-45^{\circ}\right) \cdot \sin 65^{\circ}} \) 6.8) \( \frac{\tan \left(180^{\circ}-x\right) \cdot \sin \left(90^{\circ}-x\right)}{\cos \left(90^{\circ}+x\right)}-\frac{\cos \left(180^{\circ}-x\right)}{\sin \left(90^{\circ}+x\right)} \) \( 8.9 \frac{\sin 189^{\circ}}{\tan 549^{\circ}}-\frac{\cos ^{2}\left(-9^{\circ}\right)}{\sin 99^{\circ}} \) Solving trigonometric equations (no calculators) (1.) If \( \sin \mathrm{A}=\frac{-3}{5} \) and \( 0^{\circ}<\mathrm{A}<270^{\circ} \) determine the value of: \( 1.1 \cos A \) \( 1.2 \tan A \). (2.) If \( -5 \tan \theta-3=0 \) and \( \sin \theta<0 \), determine: \( 2.1 \sin ^{2} \theta^{\circ} \) \( 2.25 \cos \theta \) \( 2.3 \quad 1-\cos ^{2} \theta \) 3. If \( 13 \cos \theta+12=0 \) and \( 180^{\circ}<\theta<360^{\circ} \), evaluate: \( 3.2 \tan \theta \) \( 3.1 \sin \theta \cos \theta \) \( 3.3 \sin ^{2} \theta+\cos ^{2} \theta \). (4.) If \( 3 \tan \theta-2=0 \) and \( \theta \in\left[90^{\circ} ; 360^{\circ}\right] \), determine, the value of \( \sqrt{13}(\sin \theta-\cos \theta \) (5.) If \( \cos 52^{\circ}=k \) as illustrated in the diagram, determine each of the following i
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad