3) a) \( -(2-3 x)+x=9 \rightarrow \) d) \( \frac{1}{2} x-4=-3-\frac{1}{3} x \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Bonus Knowledge
To solve the equation \( -(2 - 3x) + x = 9 \), start by distributing the negative sign: \( -2 + 3x + x = 9 \). Combine like terms: \( 4x - 2 = 9 \). Then add 2 to both sides: \( 4x = 11 \). Finally, divide by 4: \( x = \frac{11}{4} \). For the equation \( \frac{1}{2}x - 4 = -3 - \frac{1}{3}x \), first add \( \frac{1}{3}x \) to both sides, giving \( \frac{1}{2}x + \frac{1}{3}x - 4 = -3 \). Finding a common denominator (6) for the fractions, we get \( \frac{3}{6}x + \frac{2}{6}x = \frac{5}{6}x \). Now add 4 to both sides to isolate terms: \( \frac{5}{6}x = 1 \). Finally, multiply by the reciprocal of \( \frac{5}{6} \) to find \( x \): \( x = \frac{6}{5} \).
