Pregunta
upstudy study bank question image url

\( 1 \leftarrow \) A circle has the equation \( x^{2}+y^{2}+2 x-6 y-26=0 \). (a) Find the center ( \( h, k \) ) and radius r of the circle. (b) Graph the circle. (c) Find the intercepts, if any, of the graph. (a) The center of the circle is \( \square \). (Type an ordered pair, using integers or decimals.)

Ask by Gonzalez Rose. in the United States
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The center of the circle is (–1, 3).

Solución

To find the center and radius of the circle given by   x² + y² + 2x − 6y − 26 = 0, we first complete the square for the x and y terms. Step 1. Group the x terms and y terms together:   (x² + 2x) + (y² − 6y) = 26 Step 2. For x² + 2x: take half of 2, which is 1, and square it (1² = 1). Add and subtract 1.   x² + 2x + 1 − 1 Step 3. For y² − 6y: take half of −6, which is −3, and square it ( (−3)² = 9). Add and subtract 9.   y² − 6y + 9 − 9 Step 4. Rewrite grouping:   (x² + 2x + 1) + (y² − 6y + 9) = 26 + 1 + 9 Step 5. Express the perfect squares:   (x + 1)² + (y − 3)² = 36 This equation is in the standard form (x − h)² + (y − k)² = r², where the center is (h, k) and the radius is r. Thus, the center is (–1, 3). So the answer for part (a) is: (–1, 3).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To solve the equation of the circle \( x^{2}+y^{2}+2 x-6 y-26=0 \), let's rewrite it in the standard form. 1. First, we rearrange the equation: \[ x^{2} + 2x + y^{2} - 6y = 26 \] 2. Next, we complete the square for \( x \) and \( y \): - For \( x^{2} + 2x \): Add and subtract \( 1 \) (since \( (2/2)^{2} = 1 \)), giving us \( (x+1)^{2} - 1 \). - For \( y^{2} - 6y \): Add and subtract \( 9 \) (since \( (6/2)^{2} = 9 \)), giving us \( (y-3)^{2} - 9 \). 3. Plugging these back into the equation: \[ (x+1)^{2} - 1 + (y-3)^{2} - 9 = 26 \] \[ (x+1)^{2} + (y-3)^{2} - 10 = 26 \] \[ (x+1)^{2} + (y-3)^{2} = 36 \] This shows that the center \( (h, k) \) of the circle is \( (-1, 3) \) and the radius \( r \) is \( 6 \) (since \( r = \sqrt{36} = 6 \)). So, the center of the circle is \( (-1, 3) \). Now let's talk about graphing and intercepts! To graph the circle, simply plot the center at \( (-1, 3) \) and draw a circle that extends 6 units in all directions. You can find the intercepts by solving the equations for \( x = 0 \) and \( y = 0 \). Enjoy sketching your circle and discovering its beauty!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad