Coiliposition of two functions: Advanced For the real-valued functions \( f(x)=\sqrt{2 x+12} \) and \( g(x)=x-3 \), find the composition \( f \circ g \) and specify its \( d \) \[ (f \circ g)(x)= \] Domain of \( f \circ g \) : \( \square \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Beyond the Answer
To find the composition \( f \circ g \), you will substitute \( g(x) \) into \( f(x) \). This gives us: \[ (f \circ g)(x) = f(g(x)) = f(x - 3) = \sqrt{2(x - 3) + 12} = \sqrt{2x - 6 + 12} = \sqrt{2x + 6}. \] Now, to determine the domain of \( f \circ g \), we first need the output of \( g(x) \) to be within the domain of \( f(x) \). The function \( f(x) = \sqrt{2x + 12} \) requires \( 2x + 12 \geq 0 \), or equivalently \( x \geq -6 \). Since \( g(x) = x - 3 \), we need: \[ 2(x - 3) + 12 \geq 0 \rightarrow 2x - 6 + 12 \geq 0 \rightarrow 2x + 6 \geq 0 \rightarrow x \geq -3. \] Thus, the domain of \( f \circ g \) is: Domain of \( f \circ g \): \( [-3, \infty) \).
