Pregunta
upstudy study bank question image url

If \( g(x)=2 x-4\{x \in R: x \geq 0\} \) a) Calculate \( g^{-1}(x) \) b) Sketch the graphs of both functions on the same set of axes c) What is the relationship between the graphs?

Ask by Lindsey Bird. in Zambia
Feb 20,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

a) The inverse function is \( g^{-1}(x) = \frac{x + 4}{2} \). b) To sketch the graphs: - For \( g(x) = 2x - 4 \), plot points like (0, -4), (2, 0), (4, 4), etc., and draw a straight line. - For \( g^{-1}(x) = \frac{x + 4}{2} \), plot points like (0, 2), (2, 3), (4, 4), etc., and draw a straight line. - Both graphs are reflections of each other across the line \( y = x \). c) The graphs of \( g(x) \) and \( g^{-1}(x) \) are reflections across the line \( y = x \).

Solución

It seems that I am unable to plot the graphs directly. However, I can guide you on how to sketch them manually. ### Sketching the Graphs 1. **Graph of \( g(x) = 2x - 4 \)**: - Start at the point \( (0, -4) \). - From there, use the slope of 2 to find another point. For example, when \( x = 2 \): \[ g(2) = 2(2) - 4 = 0 \quad \text{(point (2, 0))} \] - Continue plotting points, such as \( (4, 4) \) and \( (6, 8) \). - Draw a straight line through these points, extending to the right since \( g(x) \) is defined for \( x \geq 0 \). 2. **Graph of \( g^{-1}(x) = \frac{x + 4}{2} \)**: - Start at the point \( (0, 2) \). - Use the slope of \( \frac{1}{2} \) to find another point. For example, when \( x = 0 \): \[ g^{-1}(0) = \frac{0 + 4}{2} = 2 \quad \text{(point (0, 2))} \] - When \( x = 2 \): \[ g^{-1}(2) = \frac{2 + 4}{2} = 3 \quad \text{(point (2, 3))} \] - Continue plotting points, such as \( (4, 4) \) and \( (6, 5) \). - Draw a straight line through these points, extending to the left since \( g^{-1}(x) \) is defined for all \( x \). ### Relationship Between the Graphs - The line \( y = x \) can be drawn as a dashed line to show the reflection. - The points where the two graphs intersect (like \( (4, 4) \)) confirm that they are inverses of each other. ### Summary - The inverse function \( g^{-1}(x) = \frac{x + 4}{2} \) has been calculated. - The graphs of \( g(x) \) and \( g^{-1}(x) \) are reflections across the line \( y = x \). - You can sketch these graphs on graph paper or using graphing software for a visual representation.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the inverse function \( g^{-1}(x) \), we start with the equation \( y = g(x) = 2x - 4 \). To find the inverse, we solve for \( x \): 1. Set \( y = 2x - 4 \). 2. Rearranging gives us \( 2x = y + 4 \). 3. Dividing by 2, we get \( x = \frac{y + 4}{2} \). Thus, the inverse function is: \[ g^{-1}(x) = \frac{x + 4}{2} \] **Graph Sketching:** To sketch the graphs, we can plot both \( g(x) = 2x - 4 \) (a straight line with a slope of 2 and a y-intercept at -4) and its inverse \( g^{-1}(x) = \frac{x + 4}{2} \) (a line with a slope of 0.5 and a y-intercept at 2). Start by plotting a few points for both functions: - For \( g(x) \): - If \( x = 0 \), \( g(0) = -4 \). - If \( x = 2 \), \( g(2) = 0 \). - If \( x = 4 \), \( g(4) = 4 \). - For \( g^{-1}(x) \): - If \( x = 0 \), \( g^{-1}(0) = 2 \). - If \( x = 4 \), \( g^{-1}(4) = 4 \). - If \( x = 8 \), \( g^{-1}(8) = 6 \). **Relationship Between the Graphs:** The relationship between the graphs of \( g(x) \) and \( g^{-1}(x) \) is that they are symmetric with respect to the line \( y = x \). This means that if you were to fold the graph along the line \( y = x \), both functions would match perfectly, demonstrating the inverse relationship between them.

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad