Pregunta
upstudy study bank question image url

Hence solve for \( x: \quad \frac{x^{2}-4 x}{3}-\frac{5}{x^{2}-4 x+2}=4 \)

Ask by Hilton Bright. in South Africa
Feb 16,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The solutions are \( x = 2 - \sqrt{17}, x = 1, x = 3, x = 2 + \sqrt{17} \).

Solución

Solve the equation \( \frac{x^{2}-4x}{3}-\frac{5}{x^{2}-4x+2}=4 \). Solve the equation by following steps: - step0: Solve for \(x\): \(\frac{x^{2}-4x}{3}-\frac{5}{x^{2}-4x+2}=4\) - step1: Find the domain: \(\frac{x^{2}-4x}{3}-\frac{5}{x^{2}-4x+2}=4,x \in \left(-\infty,-\sqrt{2}+2\right)\cup \left(-\sqrt{2}+2,\sqrt{2}+2\right)\cup \left(\sqrt{2}+2,+\infty\right)\) - step2: Multiply both sides of the equation by LCD: \(\left(\frac{x^{2}-4x}{3}-\frac{5}{x^{2}-4x+2}\right)\times 3\left(x^{2}-4x+2\right)=4\times 3\left(x^{2}-4x+2\right)\) - step3: Simplify the equation: \(x^{4}-8x^{3}+18x^{2}-8x-15=12x^{2}-48x+24\) - step4: Move the expression to the left side: \(x^{4}-8x^{3}+18x^{2}-8x-15-\left(12x^{2}-48x+24\right)=0\) - step5: Calculate: \(x^{4}-8x^{3}+6x^{2}+40x-39=0\) - step6: Factor the expression: \(\left(x-3\right)\left(x-1\right)\left(x^{2}-4x-13\right)=0\) - step7: Separate into possible cases: \(\begin{align}&x-3=0\\&x-1=0\\&x^{2}-4x-13=0\end{align}\) - step8: Solve the equation: \(\begin{align}&x=3\\&x=1\\&x=2+\sqrt{17}\\&x=2-\sqrt{17}\end{align}\) - step9: Check if the solution is in the defined range: \(\begin{align}&x=3\\&x=1\\&x=2+\sqrt{17}\\&x=2-\sqrt{17}\end{align},x \in \left(-\infty,-\sqrt{2}+2\right)\cup \left(-\sqrt{2}+2,\sqrt{2}+2\right)\cup \left(\sqrt{2}+2,+\infty\right)\) - step10: Find the intersection: \(\begin{align}&x=3\\&x=1\\&x=2+\sqrt{17}\\&x=2-\sqrt{17}\end{align}\) - step11: Rewrite: \(x_{1}=2-\sqrt{17},x_{2}=1,x_{3}=3,x_{4}=2+\sqrt{17}\) The solutions to the equation \( \frac{x^{2}-4x}{3}-\frac{5}{x^{2}-4x+2}=4 \) are \( x = 2 - \sqrt{17}, x = 1, x = 3, x = 2 + \sqrt{17} \).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

First, let's simplify and rearrange the equation. Start with the original equation: \[ \frac{x^{2}-4x}{3} - \frac{5}{x^{2}-4x+2} = 4 \] First, we denote \( y = x^2 - 4x \). This transforms the equation to: \[ \frac{y}{3} - \frac{5}{y + 2} = 4 \] Next, we multiply both sides by \( 3(y + 2) \) to eliminate the denominators: \[ y(y + 2) - 15 = 12(y + 2) \] Expanding both sides gives: \[ y^2 + 2y - 15 = 12y + 24 \] Bringing all terms to one side results in: \[ y^2 - 10y - 39 = 0 \] Now we can solve this quadratic equation using the quadratic formula \( y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \), where \( a = 1, b = -10, c = -39 \): Calculating the discriminant: \[ b^2 - 4ac = (-10)^2 - 4 \cdot 1 \cdot (-39) = 100 + 156 = 256 \] Taking the square root: \[ \sqrt{256} = 16 \] Now substituting back into the quadratic formula: \[ y = \frac{10 \pm 16}{2} \] Calculating the two potential values for \( y \): 1. \( y = \frac{26}{2} = 13 \) 2. \( y = \frac{-6}{2} = -3 \) Now, substituting back to find \( x \). Recall that \( y = x^2 - 4x \): 1. For \( y = 13 \): \[ x^2 - 4x - 13 = 0 \] Using the quadratic formula again: \[ x = \frac{4 \pm \sqrt{16 + 52}}{2} = \frac{4 \pm \sqrt{68}}{2} = \frac{4 \pm 2\sqrt{17}}{2} = 2 \pm \sqrt{17} \] 2. For \( y = -3 \): \[ x^2 - 4x + 3 = 0 \] Again using the quadratic formula: \[ x = \frac{4 \pm \sqrt{16 - 12}}{2} = \frac{4 \pm 2}{2} \] Thus, \[ x = 3 \quad \text{or} \quad x = 1 \] So, the solutions for \( x \) are: \[ x = 2 + \sqrt{17}, \quad x = 2 - \sqrt{17}, \quad x = 3, \quad x = 1 \] Therefore, the final solutions to the equation are: \[ x = 2 + \sqrt{17}, \quad x = 2 - \sqrt{17}, \quad x = 3, \quad x = 1 \]

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad