Pregunta
upstudy study bank question image url

Suppose you wish to retire at the age of 65 with \( \$ 70,000 \) in savings. Determine your monthly payment into an IRA if the APR is \( 5.5 \% \) compounded monthly and you begin making payments at 25 years old. Round your answer to the nearest cent, if necessary. Formulas Present Value with Compound \( \quad P V=\frac{A}{\left(1+\frac{r}{n}\right)^{n t}} \) Annuity Payment Amount Future Value of an Annuity \[ \begin{array}{l} P M T=F V \cdot \frac{\left(\frac{r}{n}\right)}{\left[\left(1+\frac{r}{n}\right)^{n t}-1\right]} \\ F V=P M T \cdot \frac{\left[\left(1+\frac{r}{n}\right)^{n t}-1\right]}{\left(\frac{r}{n}\right)} \end{array} \] Answer Keypad Keyboard Shortcuts

Ask by Deleon Maxwell. in the United States
Feb 20,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

You need to deposit approximately $40.24 each month into your IRA for 40 years to reach $70,000 at a 5.5% APR compounded monthly.

Solución

We want to accumulate a future value (FV) of $70,000 by the time you retire at 65. You begin making monthly deposits at age 25, so you have 40 years to save. The account earns an annual percentage rate (APR) of 5.5% compounded monthly. Step 1. Determine the number of periods:   Years = 65 – 25 = 40 years   Monthly periods, n = 12 ⋅ 40 = 480 Step 2. Find the monthly interest rate:   r (annual) = 0.055, so monthly rate = 0.055/12 ≈ 0.00458333 Step 3. Use the Future Value of an Annuity formula:   FV = PMT ⋅ [((1 + r/n)^(n⋅t) – 1) / (r/n)] We need to solve for the monthly payment (PMT) given FV = 70,000:   PMT = FV ⋅ (r/n) / [((1 + r/n)^(n⋅t) – 1)] Substitute the numbers:   PMT = 70000 ⋅ (0.055/12) / [(1 + 0.055/12)^(480) – 1] Step 4. Compute the necessary parts:   Monthly rate = 0.055/12 ≈ 0.00458333   (1 + 0.00458333)^(480)     = (1.00458333)^(480) Calculating the exponent:   Take the natural logarithm: ln(1.00458333) ≈ 0.004573   Then, 480 ⋅ 0.004573 ≈ 2.194   So, (1.00458333)^(480) ≈ e^(2.194) ≈ 8.976 Thus, ((1.00458333)^(480) – 1) ≈ 8.976 – 1 = 7.976 Step 5. Now substitute back into the formula:   PMT = 70000 ⋅ 0.00458333 / 7.976     = 320.8333 / 7.976     ≈ 40.24 Rounding to the nearest cent, the monthly payment is approximately $40.24. Therefore, you would need to deposit about $40.24 each month into your IRA for 40 years to accumulate $70,000 at a 5.5% APR compounded monthly.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To save up \$70,000 by retirement with a 5.5% annual interest rate compounded monthly, first convert the APR into a monthly interest rate: \( r = \frac{5.5\%}{12} = 0.004583 \). Assuming you start at age 25 and retire at 65, you will have 40 years, or 480 months, to make payments. Plugging the numbers into the annuity payment formula, we find: \[ PMT = 70,000 \cdot \frac{\left(0.004583\right)}{\left[\left(1 + 0.004583\right)^{480} - 1\right]} \approx 106.57 \] So, you'll need to save approximately \$106.57 every month. But saving isn't just about knowing the numbers; it's about the habit! Start automating your payments or setting reminders. Many find that setting aside money right after their paycheck feels like less of a sacrifice. This way, the money "disappears" into savings before you have a chance to spend it!

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad