Pregunta
upstudy study bank question image url

Wrics 3 Quarter CC \#5 \( f(x)=2^{\mathrm{x}} \) after a vertical stretch by a factor of 3 and a reflection across the \( x \)-axis. Graph both functions. Writion \( g(x) \) that represents the exponential function

Ask by Reeves Lowe. in the United States
Feb 21,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

\( g(x) = -3 \cdot 2^x \).

Solución

It seems that the system does not currently support plotting functions. However, I can describe how to graph both functions. ### Steps to Graph the Functions 1. **Graph \( f(x) = 2^x \)**: - This is an exponential growth function. - It passes through the point (0, 1) because \( 2^0 = 1 \). - As \( x \) increases, \( f(x) \) increases rapidly. - As \( x \) decreases, \( f(x) \) approaches 0 but never touches the x-axis (asymptote at \( y = 0 \)). 2. **Graph \( g(x) = -3 \cdot 2^x \)**: - This function is a reflection of \( f(x) \) across the x-axis and vertically stretched by a factor of 3. - It passes through the point (0, -3) because \( g(0) = -3 \cdot 2^0 = -3 \). - As \( x \) increases, \( g(x) \) decreases rapidly (since it is negative). - As \( x \) decreases, \( g(x) \) approaches 0 from below (asymptote at \( y = 0 \)). ### Summary of the Graphs - **\( f(x) = 2^x \)**: Exponential growth, passing through (0, 1), approaching 0 as \( x \) decreases. - **\( g(x) = -3 \cdot 2^x \)**: Exponential decay (reflected), passing through (0, -3), approaching 0 as \( x \) decreases. You can use graphing software or a graphing calculator to visualize these functions based on the descriptions provided. If you have any further questions or need additional assistance, feel free to ask!

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To understand how the transformations affect the function \( f(x) = 2^x \), first, we apply the vertical stretch by a factor of 3, resulting in \( 3f(x) = 3 \cdot 2^x \). Then, reflecting this function across the \( x \)-axis gives us \( g(x) = -3 \cdot 2^x \). To visualize this, plot \( f(x) = 2^x \) which steadily rises, and then graph \( g(x) = -3 \cdot 2^x \). You'll notice that \( g(x) \) starts at 0 and dives downward, creating an interesting contrast between the original function and its transformed version. Draw some key points, like the intercepts and asymptotes, to make your graph clearer!

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad