Pregunta
upstudy study bank question image url

The function \( f(x)=x^{2}-7, x \geq 0 \) is one-to-one. (a) Find the inverse of \( f \) and check the answer. (b) Find the domain and the range of \( f \) and \( f^{-1} \) (c) Graph \( f, f^{-1} \), and \( y=x \) on the same coordinate axes. (a) \( f^{-1}(x)=\sqrt{x+7} \) (Simplify your answer Use integers or fractions for any numbers in the expression.) (b) The domain of \( f \) is \( (-\infty, \infty) \). (Type your answer in interval notation.)

Ask by Bolton Kelly. in the United States
Feb 21,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

(a) The inverse function is \( f^{-1}(x) = \sqrt{x + 7} \). (b) The domain of \( f \) is \([0, \infty)\) and the range is \([–7, \infty)\). The domain of \( f^{-1} \) is \([–7, \infty)\) and the range is \([0, \infty)\). (c) The graphs of \( f(x) = x^2 - 7 \) (for \( x \geq 0 \)), \( f^{-1}(x) = \sqrt{x + 7} \), and the line \( y = x \) are plotted on the same coordinate axes, showing that \( f^{-1} \) is the reflection of \( f \) across \( y = x \).

Solución

We are given the function   f(x) = x² – 7  with  x ≥ 0. Because the domain is restricted to x ≥ 0, f is one-to-one and an inverse exists. We will find the inverse, determine the domains and ranges, and describe how to graph them. ────────────────────────────── Step (a): Find the Inverse of f and Check the Answer 1. Write y = f(x):   y = x² – 7  with x ≥ 0. 2. Solve for x:   y + 7 = x²   x = ±√(y + 7) Since x is restricted to x ≥ 0, we take the nonnegative square root:   x = √(y + 7). 3. Swap the roles of x and y to obtain the inverse:   f⁻¹(x) = √(x + 7). So the inverse function is   f⁻¹(x) = √(x + 7). 4. Checking the Inverse: a. Check f(f⁻¹(x)):   f(f⁻¹(x)) = f(√(x + 7))     = (√(x + 7))² – 7     = (x + 7) – 7     = x. b. Check f⁻¹(f(x)):   f⁻¹(f(x)) = f⁻¹(x² – 7)     = √((x² – 7) + 7)     = √(x²)     = x     (since x ≥ 0). Both compositions yield the identity on the appropriate domains, so f⁻¹ is indeed the inverse of f. ────────────────────────────── Step (b): Find the Domain and the Range of f and f⁻¹ For f(x) = x² – 7 with x ≥ 0: • Domain of f:   Since x is given as x ≥ 0,   Domain: [0, ∞). • Range of f:   The smallest value occurs at x = 0:     f(0) = 0² – 7 = –7.   Since as x increases f(x) increases without bound,   Range: [–7, ∞). Now for the inverse function f⁻¹(x) = √(x + 7): • Domain of f⁻¹:   Inside the square root, we require x + 7 ≥ 0,   so x ≥ –7.   Domain: [–7, ∞). • Range of f⁻¹:   Since square root outputs are nonnegative,   Range: [0, ∞). ────────────────────────────── Step (c): Graph f, f⁻¹, and y = x on the Same Coordinate Axes 1. Graph of f(x) = x² – 7:   • It is a parabola opening upward.   • Its vertex is at (0, –7).   • Since the domain is x ≥ 0, only the right branch of the parabola is drawn (starting at x = 0). 2. Graph of f⁻¹(x) = √(x + 7):   • This is the reflection of f across the line y = x.   • The function is defined for x ≥ –7.   • Its starting point is when x = –7: f⁻¹(–7) = √(0) = 0, so it starts at (–7, 0).   • It increases to the right. 3. Graph of y = x:   • This is the line with slope 1 passing through the origin.   • It is the mirror line for any function and its inverse. To sketch these: • First draw the line y = x. • Then plot the graph of f(x) = x² – 7 for x ≥ 0. Mark the vertex at (0, –7) and plot a few points (for example, at x = 2, f(2) = 4 – 7 = –3; at x = 3, f(3) = 9 – 7 = 2). • Next, plot f⁻¹(x) = √(x + 7) which is the mirror image of the f graph. Start at (–7, 0) and plot points accordingly (for example, if x = –3, then f⁻¹(–3) = √(4) = 2, so the point (–3, 2) is on f⁻¹). Because these graphs are reflections, every point (a, b) on f corresponds to a point (b, a) on f⁻¹. ────────────────────────────── Final Answers (a) Inverse Function:   f⁻¹(x) = √(x + 7). (b) Domains and Ranges:   For f(x) = x² – 7, Domain: [0, ∞) and Range: [–7, ∞).   For f⁻¹(x) = √(x + 7), Domain: [–7, ∞) and Range: [0, ∞). (c) Graphs:   • f(x) = x² – 7 is an upward-opening parabola starting at (0, –7) for x ≥ 0.   • f⁻¹(x) = √(x + 7) is the reflection of f across the line y = x, starting at (–7, 0).   • The line y = x is drawn for reference. These complete the answers for this problem.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

The function \( f(x) = x^2 - 7 \) operates on non-negative \( x \) values, which means that its domain is restricted. Therefore, the correct domain is \( [0, \infty) \), reflecting the function's acceptance of \( x \) values starting from 0. Meanwhile, the range of \( f \) starts at its minimum value when \( x = 0 \), which is \( -7 \), extending to infinity; thus, the range is \( [-7, \infty) \). Now, let’s flip the script with our inverse function \( f^{-1}(x) = \sqrt{x+7} \). This is accurate because if you plug \( f^{-1}(x) \) back into \( f(x) \), you should retrieve \( x \) if \( f \) and its inverse are functioning correctly. When finding the range of \( f^{-1} \), since \( f \) starts at -7, the domain for \( f^{-1} \) must accommodate this starting point: therefore, the domain of \( f^{-1} \) is \( [-7, \infty) \), reinforcing our earlier findings.

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad