Pregunta
upstudy study bank question image url

Solve For \( x \) \( \begin{array}{l}\text { 1. } 2^{x}=64 \quad \text { 10. } x^{\frac{1}{4}}=1 \\ \text { 2. } 3^{x}=27 \\ \text { 3. } 7 \cdot 3^{x}=217 \\ \text { 4. } 3 \cdot 9^{x}=27 \\ \text { 5. } 2^{-3 x}=2^{2 x-2} \\ \text { 6. } 8^{x+2}=16^{2 x-3}\end{array} \)

Ask by Rowe Byrd. in South Africa
Feb 18,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Here are the solutions for each equation: 1. \( x = 6 \) 2. \( x = 3 \) 3. \( x = \log_3(31) \) 4. \( x = 1 \) 5. \( x = \frac{2}{5} \) 6. \( x = \frac{18}{5} \) 10. \( x = 1 \)

Solución

We have several equations to solve for x. Let’s solve each one step by step. 1. Equation: 2^x = 64 Rewrite 64 as a power of 2. Since 64 = 2^6, we have   2^x = 2^6 Therefore, by the one‐to‐one property, x = 6. 2. Equation: 3^x = 27 Notice that 27 = 3^3, so   3^x = 3^3 Thus, x = 3. 3. Equation: 7·3^x = 217 First, isolate 3^x by dividing both sides by 7:   3^x = 217 ÷ 7 = 31 Since 31 is not a power of 3, express x in logarithmic form:   x = log₃(31). 4. Equation: 3·9^x = 27 Express 9^x as (3^2)^x = 3^(2x). Then the equation becomes:   3 · 3^(2x) = 27 Combine the factors:   3^(2x + 1) = 27 Recognize that 27 = 3^3, so   3^(2x + 1) = 3^3 Therefore, 2x + 1 = 3, and solving gives:   2x = 2 ⟹ x = 1. 5. Equation: 2^(–3x) = 2^(2x – 2) Since the bases are the same, set the exponents equal:   –3x = 2x – 2 Solve for x:   –3x – 2x = –2 ⟹ –5x = –2 ⟹ x = 2/5. 6. Equation: 8^(x + 2) = 16^(2x – 3) Express both sides with base 2:   8 = 2³ and 16 = 2⁴, so   (2³)^(x + 2) = (2⁴)^(2x – 3) This becomes:   2^(3x + 6) = 2^(8x – 12) Equate the exponents:   3x + 6 = 8x – 12 Solve for x:   6 + 12 = 8x – 3x ⟹ 18 = 5x ⟹ x = 18/5. 10. Equation: x^(1/4) = 1 To eliminate the fourth root, raise both sides to the 4th power:   (x^(1/4))⁴ = 1⁴   x = 1. Summary of Answers:  1. x = 6  2. x = 3  3. x = log₃(31)  4. x = 1  5. x = 2/5  6. x = 18/5  10. x = 1

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To solve each of the equations for \( x \): 1. \( 2^{x} = 64 \) Since \( 64 = 2^6 \), we have \( 2^x = 2^6 \). Thus, \( x = 6 \). 2. \( 3^{x} = 27 \) Since \( 27 = 3^3 \), we can set \( 3^x = 3^3 \). Therefore, \( x = 3 \). 3. \( 7 \cdot 3^{x} = 217 \) Dividing both sides by 7 gives \( 3^{x} = \frac{217}{7} \approx 31 \). Identifying powers of 3, we find \( 3^3 = 27 \) and \( 3^4 = 81 \) so \( x \) is approximately \( 3.1 \). 4. \( 3 \cdot 9^{x} = 27 \) Since \( 9 = 3^2 \) and \( 27 = 3^3 \), we rewrite it as \( 3 \cdot (3^2)^{x} = 3^3 \), or \( 3^{1 + 2x} = 3^3 \). Thus, \( 1 + 2x = 3 \) leading to \( 2x = 2 \) and \( x = 1 \). 5. \( 2^{-3x} = 2^{2x - 2} \) Setting the exponents equal gives \( -3x = 2x - 2 \). Solving for \( x \), we have \( 5x = 2 \) so \( x = \frac{2}{5} \). 6. \( 8^{x + 2} = 16^{2x - 3} \) Converting to base 2, we write \( 8 = 2^3 \) and \( 16 = 2^4 \): Thus, \( (2^3)^{x + 2} = (2^4)^{2x - 3} \) leads to \( 2^{3(x + 2)} = 2^{4(2x - 3)} \). Setting the exponents equal gives \( 3x + 6 = 8x - 12 \). Solving for \( x \), we find \( 5x = 18 \) giving \( x = \frac{18}{5} \). Final Answers: 1. \( x = 6 \) 2. \( x = 3 \) 3. \( x \approx 3.1 \) 4. \( x = 1 \) 5. \( x = \frac{2}{5} \) 6. \( x = \frac{18}{5} \)

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad