Solve For \( x \) \( \begin{array}{l}\text { 1. } 2^{x}=64 \quad \text { 10. } x^{\frac{1}{4}}=1 \\ \text { 2. } 3^{x}=27 \\ \text { 3. } 7 \cdot 3^{x}=217 \\ \text { 4. } 3 \cdot 9^{x}=27 \\ \text { 5. } 2^{-3 x}=2^{2 x-2} \\ \text { 6. } 8^{x+2}=16^{2 x-3}\end{array} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Mind Expander
To solve each of the equations for \( x \): 1. \( 2^{x} = 64 \) Since \( 64 = 2^6 \), we have \( 2^x = 2^6 \). Thus, \( x = 6 \). 2. \( 3^{x} = 27 \) Since \( 27 = 3^3 \), we can set \( 3^x = 3^3 \). Therefore, \( x = 3 \). 3. \( 7 \cdot 3^{x} = 217 \) Dividing both sides by 7 gives \( 3^{x} = \frac{217}{7} \approx 31 \). Identifying powers of 3, we find \( 3^3 = 27 \) and \( 3^4 = 81 \) so \( x \) is approximately \( 3.1 \). 4. \( 3 \cdot 9^{x} = 27 \) Since \( 9 = 3^2 \) and \( 27 = 3^3 \), we rewrite it as \( 3 \cdot (3^2)^{x} = 3^3 \), or \( 3^{1 + 2x} = 3^3 \). Thus, \( 1 + 2x = 3 \) leading to \( 2x = 2 \) and \( x = 1 \). 5. \( 2^{-3x} = 2^{2x - 2} \) Setting the exponents equal gives \( -3x = 2x - 2 \). Solving for \( x \), we have \( 5x = 2 \) so \( x = \frac{2}{5} \). 6. \( 8^{x + 2} = 16^{2x - 3} \) Converting to base 2, we write \( 8 = 2^3 \) and \( 16 = 2^4 \): Thus, \( (2^3)^{x + 2} = (2^4)^{2x - 3} \) leads to \( 2^{3(x + 2)} = 2^{4(2x - 3)} \). Setting the exponents equal gives \( 3x + 6 = 8x - 12 \). Solving for \( x \), we find \( 5x = 18 \) giving \( x = \frac{18}{5} \). Final Answers: 1. \( x = 6 \) 2. \( x = 3 \) 3. \( x \approx 3.1 \) 4. \( x = 1 \) 5. \( x = \frac{2}{5} \) 6. \( x = \frac{18}{5} \)
