Pregunta
upstudy study bank question image url

20. \( A(t)=300(1.07)^{t} \)

Ask by Rodriquez Pollard. in the United States
Feb 18,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The function \( A(t) = 300(1.07)^{t} \) represents exponential growth, starting with an initial amount of 300 and increasing by 7% each time period.

Solución

It looks like you have a function \( A(t) = 300(1.07)^{t} \). This function typically represents an exponential growth model, where: - \( A(t) \) is the amount at time \( t \), - \( 300 \) is the initial amount (the value at \( t = 0 \)), - \( 1.07 \) is the growth factor (indicating a 7% growth rate per time unit), - \( t \) is the time variable. If you have a specific question or need to perform a calculation with this function, please provide more details! For example, you might want to find the amount after a certain number of time units, or you might want to analyze the function's features. Let me know how I can assist you further!

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

Did you know that exponential functions like \( A(t)=300(1.07)^{t} \) model real-world growth phenomena? This particular equation represents a quantity growing at an annual rate of 7%. Think about how investments might appreciate over time, or how populations can increase. These functions are essential for understanding everything from finance to biology! On the problem-solving front, a common mistake with exponential growth equations is forgetting to apply the formula correctly when changing time intervals. For example, if you switch from years to months, ensure you adjust the rate accordingly! Similarly, always check your calculations to avoid compounding errors, which can lead to wildly inaccurate predictions!

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad