Pregunta
upstudy study bank question image url

Given that the roots of a quadratic equation are: \( \frac{4 \pm \sqrt{16-4 p^{2}}}{2 p} \) For which value(s) of \( p \) will the roots be non-real?

Ask by Daniels Salazar. in South Africa
Feb 18,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The roots are non-real when \( p \) is less than -2 or greater than 2.

Solución

To determine the values of \( p \) for which the roots of the quadratic equation are non-real, we need to analyze the expression for the roots: \[ r = \frac{4 \pm \sqrt{16 - 4p^2}}{2p} \] The roots will be non-real if the expression under the square root (the discriminant) is negative. Therefore, we need to find when: \[ 16 - 4p^2 < 0 \] Let's solve this inequality step by step. 1. Rearranging the inequality gives us: \[ 16 < 4p^2 \] 2. Dividing both sides by 4: \[ 4 < p^2 \] 3. Taking the square root of both sides, we find: \[ 2 < |p| \] This means that \( p \) must be either greater than 2 or less than -2. Therefore, we can express this as: \[ p > 2 \quad \text{or} \quad p < -2 \] Thus, the values of \( p \) for which the roots of the quadratic equation are non-real are: \[ p \in (-\infty, -2) \cup (2, \infty) \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To determine when the roots of the given quadratic equation are non-real, we need to look at the expression under the square root, known as the discriminant. The roots will be non-real when the discriminant is less than zero. The roots are given as: \[ \frac{4 \pm \sqrt{16 - 4p^2}}{2p} \] The discriminant \(D\) here is \(16 - 4p^2\). For the roots to be non-real, we need: \[ 16 - 4p^2 < 0 \] Rearranging this inequality: \[ 4p^2 > 16 \] Dividing both sides by \(4\): \[ p^2 > 4 \] Taking the square root of both sides gives us two intervals for \(p\): \[ p > 2 \quad \text{or} \quad p < -2 \] So, the values of \(p\) for which the roots will be non-real are \(p > 2\) or \(p < -2\).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad