Pregunta
upstudy study bank question image url

Emily is using another wavy pattern on a large cake that she wants to be consistent. She decides to use the function \( f(x)=4 \cot x \) to create the pattern. Help Emily to determine its stretching factor and phase shift, and then graph it for two periods. Identify the correct pattern below. Enter the exact answers. Stretching factor = Number Phase shift: Click for List

Ask by Cummings Erickson. in the United States
Feb 20,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Stretching factor: 4 Phase shift: 0

Solución

It seems that I am unable to generate a graph at this moment. However, I can describe how to graph the function \( f(x) = 4 \cot x \) for two periods. ### Steps to Graph \( f(x) = 4 \cot x \): 1. **Identify Key Points**: - The cotangent function has vertical asymptotes where \( \cot x \) is undefined, which occurs at \( x = n\pi \) for \( n \in \mathbb{Z} \). For the interval \( [0, 2\pi] \), the asymptotes are at \( x = 0 \), \( x = \pi \), and \( x = 2\pi \). - The function crosses the x-axis at \( x = \frac{\pi}{2} \) and \( x = \frac{3\pi}{2} \). 2. **Plot the Asymptotes**: - Draw vertical dashed lines at \( x = 0 \), \( x = \pi \), and \( x = 2\pi \). 3. **Plot the Key Points**: - At \( x = \frac{\pi}{2} \), \( f\left(\frac{\pi}{2}\right) = 4 \cot\left(\frac{\pi}{2}\right) = 0 \). - At \( x = \frac{3\pi}{2} \), \( f\left(\frac{3\pi}{2}\right) = 4 \cot\left(\frac{3\pi}{2}\right) = 0 \). 4. **Behavior Near Asymptotes**: - As \( x \) approaches \( 0 \) from the right, \( f(x) \) approaches \( +\infty \). - As \( x \) approaches \( 0 \) from the left, \( f(x) \) approaches \( -\infty \). - As \( x \) approaches \( \pi \) from the left, \( f(x) \) approaches \( +\infty \). - As \( x \) approaches \( \pi \) from the right, \( f(x) \) approaches \( -\infty \). - The same behavior occurs at \( x = 2\pi \). 5. **Sketch the Curve**: - Connect the points smoothly, ensuring the curve approaches the asymptotes and crosses the x-axis at the identified points. ### Summary of Results: - **Stretching Factor**: \( 4 \) - **Phase Shift**: \( 0 \) If you have graphing software or a graphing calculator, you can input the function \( f(x) = 4 \cot x \) to visualize it accurately.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

The function \( f(x) = 4 \cot x \) has a vertical stretch factor of 4, meaning that the amplitude of the waves is increased by this factor compared to the standard \( \cot x \). As for the phase shift, the basic cotangent function doesn't have any horizontal shifts in this case, so the phase shift is \( 0 \). To graph \( f(x) = 4 \cot x \), you can plot it over two periods. The period of the cotangent function is \( \pi \), so for two periods, you would graph from \( 0 \) to \( 2\pi \). The key points to plot include the vertical asymptotes at \( x = 0, \pi, 2\pi \) and the values where the function crosses the x-axis, which occur at \( x = \frac{\pi}{2}, \frac{3\pi}{2} \). Connecting these points smoothly will help showcase that wavy pattern Emily is aiming for!

preguntas relacionadas

Latest Trigonometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad