Pregunta
upstudy study bank question image url

6. Prove that: \( (\sin \theta+\cos \theta)^{2}=1+2 \sin \theta \cos \theta \) 8. Prove that: \( \frac{1-\cos ^{2} \theta}{\cos ^{2} \theta+2 \cos \theta+1}=\frac{1-\cos \theta}{1+\cos \theta} \) 10. Prove that: \( \frac{1+\sin x}{1-\sin x}-\frac{1-\sin x}{1+\sin x}=\frac{4 \operatorname{con} x}{\cos x} \) 11. Prove that: \( \frac{1+2 \sin \theta . \cos \theta}{\sin \theta+\cos \theta}=\sin \theta+\cos \theta \) (consider number 6\( ) \)

Ask by Paul Daniel. in South Africa
Feb 21,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

\[ (\sin \theta + \cos \theta)^{2} = 1 + 2 \sin \theta \cos \theta \] is proven by expanding the left side and using the Pythagorean identity. \]

Solución

Verify the identity by following steps: - step0: Verify: \(\left(\sin\left(\theta \right)+\cos\left(\theta \right)\right)^{2}=1+2\sin\left(\theta \right)\cos\left(\theta \right)\) - step1: Choose a side to work on: \(\sin\left(2\theta \right)+1=1+2\sin\left(\theta \right)\cos\left(\theta \right)\) - step2: Choose the other side to work on: \(\sin\left(2\theta \right)+1=1+\sin\left(2\theta \right)\) - step3: Calculate: \(1+\sin\left(2\theta \right)=1+\sin\left(2\theta \right)\) - step4: Verify the identity: \(\textrm{true}\) To prove the equation \[ (\sin \theta + \cos \theta)^{2} = 1 + 2 \sin \theta \cos \theta, \] we can start by expanding the left-hand side: 1. **Expand the left-hand side:** \[ (\sin \theta + \cos \theta)^{2} = \sin^{2} \theta + 2 \sin \theta \cos \theta + \cos^{2} \theta. \] 2. **Use the Pythagorean identity:** We know that \[ \sin^{2} \theta + \cos^{2} \theta = 1. \] Therefore, we can substitute this into our expansion: \[ \sin^{2} \theta + \cos^{2} \theta + 2 \sin \theta \cos \theta = 1 + 2 \sin \theta \cos \theta. \] 3. **Conclusion:** Thus, we have shown that \[ (\sin \theta + \cos \theta)^{2} = 1 + 2 \sin \theta \cos \theta, \] which proves the statement is true.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To prove the identity \( (\sin \theta + \cos \theta)^2 = 1 + 2 \sin \theta \cos \theta \), let's start by expanding the left side. We know that \( (a + b)^2 = a^2 + 2ab + b^2 \). Here, \( a = \sin \theta \) and \( b = \cos \theta \), so we get: \[ (\sin \theta + \cos \theta)^2 = \sin^2 \theta + 2 \sin \theta \cos \theta + \cos^2 \theta \] Using the Pythagorean identity \( \sin^2 \theta + \cos^2 \theta = 1 \), we can substitute this into our equation: \[ = 1 + 2 \sin \theta \cos \theta \] Thus, we have successfully proven that \( (\sin \theta + \cos \theta)^2 = 1 + 2 \sin \theta \cos \theta \). Now onto some potential pitfalls to avoid while proving identities like these! Always remember to utilize known identities such as the Pythagorean identity or double angle formulas, as they can simplify your work and lead you to the solution more quickly. Also, be mindful of squaring both sides: adding extra conditions can sometimes lead to errors in your proofs, so check for extraneous solutions when rearranging terms!

preguntas relacionadas

8. Simplify without using a calculator. (8.1) \( \frac{\sin \left(180^{\circ}-x\right) \cdot \tan \left(360^{\circ}-x\right)}{\cos \left(80^{\circ}-x\right)} \times \frac{\cos \left(-180^{\circ}-x\right)}{\cos \left(360^{\circ}+x\right) \sin \left(360^{\circ}-x\right)} \) \( 8.2 \frac{\cos 135^{\circ} \sin 160^{\circ}}{\sin 225^{\circ} \cos 70^{\circ}} \) (8.3) \( \frac{\sin (-\theta)+\cos 120^{\circ}+\tan \left(-180^{\circ}-\theta\right)}{\sin ^{2} 225^{\circ}-\tan (-\theta)-\cos \left(90^{\circ}+\theta\right)} \) B.4 \( 4^{x} \frac{\sin 247^{\circ} \cdot \tan 23^{\circ} \cdot \cos 113^{\circ}}{\sin \left(-157^{\circ}\right)} \) (8.5) \( \frac{3 \cos 150^{\circ} \cdot \sin 270^{\circ}}{\tan \left(-45^{\circ}\right) \cdot \cos 600^{\circ}} \) 8.6) \( \frac{\tan \left(180^{\circ}-x\right) \cdot \sin \left(90^{\circ}+x\right)}{\sin (-x)}-\sin y \cdot \cos \left(90^{\circ}-y\right) \) \( 8.7 \frac{\tan 30^{\circ} \cdot \sin 60^{\circ} \cdot \cos 25^{\circ}}{\cos 135^{\circ} \cdot \sin \left(-45^{\circ}\right) \cdot \sin 65^{\circ}} \) 6.8) \( \frac{\tan \left(180^{\circ}-x\right) \cdot \sin \left(90^{\circ}-x\right)}{\cos \left(90^{\circ}+x\right)}-\frac{\cos \left(180^{\circ}-x\right)}{\sin \left(90^{\circ}+x\right)} \) \( 8.9 \frac{\sin 189^{\circ}}{\tan 549^{\circ}}-\frac{\cos ^{2}\left(-9^{\circ}\right)}{\sin 99^{\circ}} \) Solving trigonometric equations (no calculators) (1.) If \( \sin \mathrm{A}=\frac{-3}{5} \) and \( 0^{\circ}<\mathrm{A}<270^{\circ} \) determine the value of: \( 1.1 \cos A \) \( 1.2 \tan A \). (2.) If \( -5 \tan \theta-3=0 \) and \( \sin \theta<0 \), determine: \( 2.1 \sin ^{2} \theta^{\circ} \) \( 2.25 \cos \theta \) \( 2.3 \quad 1-\cos ^{2} \theta \) 3. If \( 13 \cos \theta+12=0 \) and \( 180^{\circ}<\theta<360^{\circ} \), evaluate: \( 3.2 \tan \theta \) \( 3.1 \sin \theta \cos \theta \) \( 3.3 \sin ^{2} \theta+\cos ^{2} \theta \). (4.) If \( 3 \tan \theta-2=0 \) and \( \theta \in\left[90^{\circ} ; 360^{\circ}\right] \), determine, the value of \( \sqrt{13}(\sin \theta-\cos \theta \) (5.) If \( \cos 52^{\circ}=k \) as illustrated in the diagram, determine each of the following i
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad