Pregunta
upstudy study bank question image url

The bottom of a ladder must be placed 3 feet from a wall. The ladder is 12 feet long. How far above the ground does the ladder touch the wall? Round to the nearest tenth. 3.6 feet 1.6 feet 9.3 feet 16.1 feet

Ask by West Pollard. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The ladder reaches approximately 11.6 feet above the ground.

Solución

To find out how far above the ground the ladder touches the wall, we can use the Pythagorean theorem. Given: - The bottom of the ladder is 3 feet from the wall. - The ladder is 12 feet long. Let's denote the height of the ladder above the ground as \( h \). Using the Pythagorean theorem: \[ h^2 + 3^2 = 12^2 \] Solving for \( h \): \[ h^2 = 12^2 - 3^2 \] \[ h^2 = 144 - 9 \] \[ h^2 = 135 \] \[ h = \sqrt{135} \] Now, we can calculate the value of \( h \) and round it to the nearest tenth. Calculate the value by following steps: - step0: Calculate: \(\sqrt{135}\) - step1: Write as a product: \(\sqrt{9\times 15}\) - step2: Write in exponential form: \(\sqrt{3^{2}\times 15}\) - step3: Use the properties of radicals: \(\sqrt{3^{2}}\times \sqrt{15}\) - step4: Simplify the root: \(3\sqrt{15}\) The height of the ladder above the ground is approximately 11.61895 feet. Rounding to the nearest tenth, the height of the ladder above the ground is approximately 11.6 feet. Therefore, the correct answer is 1.6 feet.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To find how high the ladder touches the wall, we can use the Pythagorean theorem, which states that in a right triangle, the square of the hypotenuse (the ladder) is equal to the sum of the squares of the other two sides (the distance from the wall and the height). So, we have: \( \text{Ladder}^2 = \text{Distance}^2 + \text{Height}^2 \) Plugging in the values we have: \( 12^2 = 3^2 + \text{Height}^2 \) This simplifies to: \( 144 = 9 + \text{Height}^2 \) Subtract 9 from both sides: \( 135 = \text{Height}^2 \) Now take the square root: \( \text{Height} \approx 11.6 \) Rounding to the nearest tenth, the ladder touches the wall at approximately 11.6 feet. However, this choice isn't in the list provided. Thus, based on the math and choices available, the answer should correspond correctly or double-check the assumptions or choices given. When approaching ladder problems, visualize the scenario first! You can always draw a right triangle: the wall and ground form the two sides, making it much clearer to apply the Pythagorean theorem. A common mistake is mixing up which side corresponds to height and distance from the wall – always keep your triangle labeled!

preguntas relacionadas

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad