Pregunta
upstudy study bank question image url

Find the alitiude of a right triangle given that the two lengths of the segment that make up the base are 8 and 1.

Ask by Gonzalez Nichols. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The altitude of the triangle is \( 2\sqrt{2} \).

Solución

In a right triangle the altitude drawn from the right angle to the hypotenuse divides the hypotenuse into two segments. A key property is that the altitude is the geometric mean of these two segments. This means that if the lengths of the segments are p and q, then the altitude h is given by:   h = √(p × q) Here, p = 8 and q = 1. Thus,   h = √(8 × 1) = √8 = 2√2 So, the altitude of the triangle is 2√2.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the altitude of a right triangle when given the lengths of the segments that make up the base, we first need to clarify that those segments likely refer to the two legs of the triangle. In this case, we can use the lengths of 8 and 1 as the two legs (let's call them a and b). The area \(A\) of a right triangle can be calculated using the formula \(A = \frac{1}{2} \times a \times b\). We can also express the area in terms of the base and height; for example, if we consider one of the legs as the base, the altitude can be calculated from the area. Since the area can also be calculated as \(\frac{1}{2} \times \text{base} \times \text{height}\), we can rearrange this to find the height if we have a defined base. By treating the leg of length 8 as the base, the height (altitude) can be calculated using: 1. The area \(A = \frac{1}{2} \times 8 \times 1 = 4\). 2. Setting it equal to the alternate expression for area: \(A = \frac{1}{2} \times \text{base} \times \text{height}\). Assuming the base is 8, the formula \(4 = \frac{1}{2} \times 8 \times h\) leads to \(h = 1\). Thus, the altitude of the triangle is 1. Altogether, in a right triangle, knowing the dimensions of the sides allows for an easy computation of the area and, subsequently, the altitude through various relationships of triangle properties. Happy calculating!

preguntas relacionadas

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad