Pregunta
upstudy study bank question image url

If the parabola's vertex is on the \( x \)-axis, then the corresponding equation has a single repeated root on the line of symmetry, and this distance term is zero, algebraically, the (iii) commonly known as \( b^{2}-4 a c=0 \)

Ask by Rogers Burns. in South Africa
Feb 18,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

For a parabola with its vertex on the \( x \)-axis, the discriminant \( b^2 - 4ac = 0 \) ensures there's a single repeated root.

Solución

To analyze the condition for a parabola with its vertex on the \( x \)-axis and a single repeated root, we can start by recalling the standard form of a quadratic equation: \[ y = ax^2 + bx + c \] The vertex of this parabola is given by the formula: \[ x_v = -\frac{b}{2a} \] For the vertex to be on the \( x \)-axis, the \( y \)-coordinate of the vertex must be zero. The \( y \)-coordinate of the vertex can be found by substituting \( x_v \) back into the equation: \[ y_v = a\left(-\frac{b}{2a}\right)^2 + b\left(-\frac{b}{2a}\right) + c \] Simplifying this expression gives: \[ y_v = a\left(\frac{b^2}{4a^2}\right) - \frac{b^2}{2a} + c \] \[ y_v = \frac{b^2}{4a} - \frac{2b^2}{4a} + c \] \[ y_v = -\frac{b^2}{4a} + c \] Setting \( y_v = 0 \) for the vertex to be on the \( x \)-axis, we have: \[ -\frac{b^2}{4a} + c = 0 \] Rearranging this gives: \[ c = \frac{b^2}{4a} \] Now, substituting \( c \) back into the quadratic equation's discriminant condition for a single repeated root, we have: \[ b^2 - 4ac = 0 \] Substituting \( c \): \[ b^2 - 4a\left(\frac{b^2}{4a}\right) = 0 \] \[ b^2 - b^2 = 0 \] This confirms that the condition \( b^2 - 4ac = 0 \) holds true when the vertex is on the \( x \)-axis, indicating a single repeated root. Thus, the conclusion is that for a parabola with its vertex on the \( x \)-axis, the discriminant condition \( b^2 - 4ac = 0 \) is satisfied, confirming the presence of a single repeated root.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

Ah, the beauty of parabolas! When a parabola's vertex is on the \( x \)-axis, it means that its lowest or highest point (depending on whether it opens up or down) is perfectly aligned with that axis. This configuration is essential because it reveals that the parabola touches the \( x \)-axis at exactly one point, leading to that condition where the discriminant \( b^2 - 4ac = 0 \). This is the magical point where the roots are not just two distinct points but rather a cozy single location! Now, let’s talk about the real-world application of this concept. Parabolas with this property can be observed in fields like physics, particularly in projectile motion. Whenever an object is thrown or launched with just the right angle, it can follow a parabolic path, and if it lands at the same height it was launched, you can often find that the maximum height (the vertex) stays right on the line of symmetry, leading to that delightful scenario of a repeated root. This principle helps us design safe trajectories in sports, engineering structures, and even in space exploration!

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad