EXERCISE 8 1. Without solving each of the following equations, discuss the nature of the roots: \( \begin{array}{lll}\text { (a) } x^{2}+x+1=0 & \text { (b) } x^{2}=2(x+1) & \text { (c) } x^{2}=4 x \\ \text { (d) }-2 x^{2}-16 x-32=0 & \text { (e) }(x-2)(2 x-1)=5 & \text { (f) } 3 x+7=\frac{5}{x}\end{array} \) 2. Show that the roots of the equation \( m x(x-4)=-4 m \) are equal for all real values of \( m \). Show that the roots of the equation \( x(x-3 m)=-5 m^{2} \) are non-real if \( m \neq 0 \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Bonus Knowledge
To assess the nature of the roots without directly solving the equations, we can analyze the discriminant (in the quadratic cases) or specific properties of each equation. For the first part: (a) The roots of \( x^{2}+x+1=0 \) are non-real because the discriminant, \( D = b^2 - 4ac = 1 - 4 \), is negative. (b) Rearranging gives \( x^2 - 2x - 2 = 0 \), whose discriminant \( D = (-2)^2 - 4(1)(-2) = 4 + 8 = 12 \), indicates two distinct real roots. (c) The rearrangement leads to \( x^2 - 4x = 0 \), and factoring gives \( x(x-4)=0 \), revealing roots \( x=0 \) and \( x=4 \) (two distinct real roots). (d) The equation can be simplified to \( x^{2} + 8 x + 16 = 0 \). The discriminant here is \( D = 64 - 64 = 0 \), signifying one real double root. (e) Expanding gives \( 2x^2 - 5x + 4 = 0 \), and its discriminant \( D = 25 - 32 = -7 \) reveals non-real roots. (f) Rearranging yields \( 3x^2 + 7x - 5 = 0 \), where \( D = 49 + 60 = 109 \), indicating two distinct real roots. For the second part: The equation \( m x(x-4) = -4m \) simplifies to \( x^2 - 4x + 4 = 0 \), representing \( (x-2)^2 = 0 \) which shows that it yields a double root \( x = 2 \) for any real value of \( m \) (as long as \( m \neq 0 \)). In contrast, the equation \( x(x - 3m) = -5m^2 \) can be rearranged to \( x^2 - 3mx + 5m^2 = 0 \). The discriminant in this case \( D = (-3m)^2 - 4(1)(5m^2) = 9m^2 - 20m^2 = -11m^2 \) is negative for all \( m \neq 0 \), implying that the roots are indeed non-real.
