Pregunta
upstudy study bank question image url

\( 1 \leftarrow \) The function \( f(x)=\frac{3 x}{7 x-1} \) is one-to-one (a) Find its inverse function \( f^{-1} \) and check your answer. (b) Find the domain and the range of \( f \) and \( f^{-1} \). (a) \( f^{-1}(x)=\square \) (Simplify your answer.)

Ask by Fuentes Frazier. in the United States
Feb 21,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

(a) \( f^{-1}(x) = \frac{x}{7x - 3} \) (b) - **Domain of \( f \)**: All real numbers except \( \frac{1}{7} \). - **Range of \( f \)**: All real numbers except \( \frac{3}{7} \). - **Domain of \( f^{-1} \)**: All real numbers except \( \frac{3}{7} \). - **Range of \( f^{-1} \)**: All real numbers except \( \frac{1}{7} \).

Solución

We start with the function   f(x) = (3x) / (7x – 1). Our goals are:  (a) Find the inverse function f⁻¹(x) and check it.  (b) Find the domains and ranges of both f and f⁻¹. ──────────────────────── Step (a): Find f⁻¹(x) 1. Write the equation with y in place of f(x):   y = (3x) / (7x – 1). 2. To find the inverse, swap the roles of x and y:   x = (3y) / (7y – 1). 3. Solve for y:   Multiply both sides by (7y – 1) to clear the denominator:     x(7y – 1) = 3y   Expand the left side:     7xy – x = 3y   Gather terms containing y on one side:     7xy – 3y = x   Factor y out:     y(7x – 3) = x   Solve for y by dividing both sides by (7x – 3):     y = x / (7x – 3). Thus, the inverse function is   f⁻¹(x) = x / (7x – 3). 4. Check the result by computing f(f⁻¹(x)):   Substitute x / (7x – 3) into the original function f:     f(f⁻¹(x)) = f(x / (7x – 3))        = [3 · (x / (7x – 3))] / [7 · (x / (7x – 3)) – 1].   Simplify the numerator:     = 3x / (7x – 3).   Simplify the denominator:     7 · (x / (7x – 3)) – 1 = (7x/(7x – 3)) – 1        = [7x – (7x – 3)] / (7x – 3)        = 3 / (7x – 3).   Now, f(f⁻¹(x)) becomes:     = [3x/(7x – 3)] / [3/(7x – 3)]     = x. This confirms that f⁻¹(x) is the correct inverse. ──────────────────────── Step (b): Domain and Range 1. Domain of f:   f(x) = 3x/(7x – 1) is undefined when its denominator equals zero.   Set 7x – 1 = 0:     7x = 1 ⟹ x = 1/7.   So, the domain of f is:     Domain(f) = { all real numbers } \ {1/7}. 2. Range of f:   Since f is one-to-one, its range is the set of all values that f(x) can take.   Note the horizontal asymptote: When x is very large in magnitude, f(x) ≈ (3x)/(7x) = 3/7.   We check if f(x) ever equals 3/7:     Set (3x)/(7x – 1) = 3/7 and solve:      Multiply both sides by 7(7x – 1):       21x = 3(7x – 1)       21x = 21x – 3       Subtract 21x from both sides:       0 = –3, which is impossible.   Thus, f(x) can never be 3/7.   So, the range of f is:     Range(f) = { all real numbers } \ {3/7}. 3. For the inverse function f⁻¹(x):   Recall that the domain of f⁻¹ is the range of f, and the range of f⁻¹ is the domain of f.   So,     Domain(f⁻¹) = Range(f) = { all real numbers } \ {3/7}.     Range(f⁻¹) = Domain(f) = { all real numbers } \ {1/7}. ──────────────────────── Final Answers: (a) f⁻¹(x) = x / (7x – 3). (b) • Domain of f: all real numbers except 1/7; Range of f: all real numbers except 3/7.      Domain of f⁻¹: all real numbers except 3/7; Range of f⁻¹: all real numbers except 1/7.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the inverse function \( f^{-1}(x) \) of \( f(x) = \frac{3x}{7x - 1} \), we start by letting \( y = f(x) \): \[ y = \frac{3x}{7x - 1} \] Now, we solve for \( x \) in terms of \( y \). First, we'll multiply both sides by \( 7x - 1 \): \[ y(7x - 1) = 3x \] Expanding gives us: \[ 7xy - y = 3x \] We can rearrange this to isolate \( x \): \[ 7xy - 3x = y \] Factoring \( x \) out of the left side: \[ x(7y - 3) = y \] Now, divide both sides by \( 7y - 3 \): \[ x = \frac{y}{7y - 3} \] Thus, the inverse function is: \[ f^{-1}(x) = \frac{x}{7x - 3} \] To check our work, we can verify if \( f(f^{-1}(x)) = x \): \[ f\left(f^{-1}(x)\right) = f\left(\frac{x}{7x - 3}\right) = \frac{3\left(\frac{x}{7x - 3}\right)}{7\left(\frac{x}{7x - 3}\right) - 1} \] Calculating the denominator: \[ = 7\left(\frac{x}{7x - 3}\right) - 1 = \frac{7x}{7x - 3} - 1 = \frac{7x - (7x - 3)}{7x - 3} = \frac{3}{7x - 3} \] So: \[ f(f^{-1}(x)) = \frac{3\left(\frac{x}{7x - 3}\right)}{\frac{3}{7x - 3}} = x \] Thus, our inverse is verified. For the domain and range: The domain of \( f \) is \( x \neq \frac{1}{7} \) because it's undefined there (as the denominator cannot be zero). The range of \( f \) is all real numbers except \( \frac{3}{7} \) because the output cannot equal \( \frac{3}{7} \) (check by rearranging the equation). Conversely, \( f^{-1} \) has the domain of \( x \neq \frac{3}{7} \) and the range includes all real numbers except \( \frac{1}{7} \). So in summary: (a) \( f^{-1}(x) = \frac{x}{7x - 3} \) (b) Domain of \( f \): \( x \in \mathbb{R}, x \neq \frac{1}{7} \); Range of \( f \): \( y \in \mathbb{R}, y \neq \frac{3}{7} \); Domain of \( f^{-1} \): \( x \in \mathbb{R}, x \neq \frac{3}{7} \); Range of \( f^{-1} \): \( y \in \mathbb{R}, y \neq \frac{1}{7} \).

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad